Элементы теории множеств

Выполнил Александров И.В.

Самара 2011.

СОДЕРЖАНИЕ

Глава 1. Исходные понятия теории множеств ....................................... 5

1.1. Множество как первоначальное неопределяемое понятие ............. 5

1.2. Способы задания множеств ............................................................. 6

1.3. Равенство множеств .......................................................................... 7

Глава 2. Основные теоретико-множественные отношения .................... 8

2.1. Подмножества .................................................................................. 8

2.2. Операции над множествами и их свойства ..................................... 8

2.3. Диаграммы Эйлера-Венна ............................................................. 11

2.4. Прямое произведение множеств .................................................... 13

2.5. Отношения на множестве ............................................................... 14

ГЛАВА 1

ИСХОДНЫЕ ПОНЯТИЯ ТЕОРИИ МНОЖЕСТВ

1.1. Множество как первоначальное неопределяемое понятие в математике

В 70-х годах прошлого века немецкий математик Георг Кантор, исследуя тригонометрические ряды и числовые последовательности, встал перед необходимостью сравнить между собой бесконечные совокупности чисел. Для решения возникших проблем Кантор и выдвинул понятие множества. Согласно канторовскому определению, множество есть любое собрание определенных и различимых между собой объектов нашей интуиции или интеллекта, мыслимое как единое целое. Это определение не накладывает никаких ограничений на природу элементов множества, что предоставляет нам значительную свободу. В частности, допустимо рассматривать множества, элементы которых по той или иной причине нельзя точно указать (например, множество простых чисел).

В современной математике понятие множества является одним из основных. Универсальность этого понятия в том, что под него можно подвести любую совокупность явлений, предметов и объектов реального мира. Сами множества так же могут объединяться во множества. Например, математики говорят о множестве фигур на плоскости, о множестве тел в пространстве, но каждую фигуру, каждое тело они мыслят как множество точек.

Суть понятия “множество” вполне передается словами: “совокупность”, “собрание”, “набор” и т.д. Однако, как абстрактное математическое понятие “множество” неопределимо.

Несмотря на это, определить какое-либо конкретное множество - задача не из трудных. Определить любое конкретное множество - значит определить, какие предметы (явления, объекты) принадлежат данному множеству, а какие не принадлежат. Иначе говоря, всякое множество однозначно определяется своими элементами.

Для того чтобы некоторую совокупность элементов можно было назвать множеством, необходимо, чтобы выполнялись следующие условия:

1. Должно существовать правило, позволяющее определить, принадлежит ли указанный элемент данной совокупности.

2. Должно существовать правило, позволяющее отличать элементы друг от друга. (Это, в частности, означает, что множество не может содержать двух одинаковых элементов).

Множества обозначаются прописными буквами латинского или готического алфавита: A, B, ... , M, K, ... . Если множество A состоит из элементов a, b, c, ... , это обозначается с помощью фигурных скобок: A = {a, b, c, ...}. Если a есть элемент множества A , то это записывают следующим образом: aÎA. Если же a не является элементом множества A , то пишут aÏA. Существует также специальное, так называемое пустое множество, которое не содержит ни одного элемента. Пустое множество обозначается символом Æ. Пустое множество является частью любого множества.

1.2. Способы задания множеств

Для того, чтобы задать множество, нужно указать, какие элементы ему принадлежат (или могут принадлежать). Это можно сделать различными способами:

· перечислением элементов: M = {m1 ,m2 , ... , mn};

· характеристическим условием (свойством): M = {x | P(x)};

· порождающим правилом: M = {x | x = f(t)};

Первый способ полностью описывает множество. Однако он применим только для конечных (а, вообще говоря, для конечно обозримых множеств). При задании множеств перечислением обозначения элементов обычно заключают в фигурные скобки и разделяют запятыми. В этом случае считается несущественным порядок перечисляемых элементов.

Пример.

Задание множества первых пяти нечетных натуральных чисел перечислением элементов: M = {1, 3, 5, 7, 9}.

Второй способ позволяет определить принадлежность элемента x множеству M и, поэтому, пригоден для описания не только конечных, но и бесконечных множеств. Характеристическое условие обычно задается в форме логического утверждения, которое может выражаться словами, математическими уравнениями, неравенствами. Если для данного элемента условие выполнено, то он принадлежит определяемому множеству, в противном случае не принадлежит. Характеристическое условие может состоять из нескольких условий: в таком случае в записи могут использоваться следующие знаки:

● L - равносильно “и”;

● V – равносильно “или”;

● " - квантор всеобщности;

● $ - квантор существования.

Задание множеств их характеристическим свойством иногда приводит к осложнениям. Может случиться, что два различных характеристических свойства задают одно и то же множество, т. е. всякий элемент, обладающий одним свойством, обладает и другим, и обратно.

Пример.

Элемент x множества М есть целое число, квадрат которого меньше нуля.

M = {x | xÎZ L x2 < 0}.

Третий способ задания множества сводится к построению конкретных представителей как конечных, так и бесконечных множеств. Порождающее правило описывает способ построения объектов, которые являются элементами определяемого множества.

Пример.

Зададим два множества перечислением: M1 := {1,2}; M2 := {1}.

Зададим множество M3 правилом построения его элементов:

M3 := {x | x = (x1,x2), x1ÎM1, x2ÎM2}.

Правило читается следующим образом: Для того, чтобы построить элемент множества M3, надо взять один объект из множества M1, второй объект из множества M2 и составить из них упорядоченную пару (часто говорят кортеж длины 2). Руководствуясь этим правилом, можно построить каждый элемент множества M3: (1,1), (2,1).

1.3. Равенство множеств

Определение равенства множеств.Множества А и B равны, если они состоят из одних и тех же элементов, то есть, если из xÎA следует xÎB и обратно, из xÎB следует xÎA.

Формально равенство двух множеств записывается следующим образом:

А=В ó "x | xÎA ó xÎB.

Равенство множеств А и В записывают в виде А=В.

Чтобы доказать равенство двух множеств, необходимо доказать, что:

1. "x | xÎA Þ xÎB;

2. "x | xÎ B Þ xÎ A.

Пример.

1. Равенство всех пустых множеств (A=Æ, B=Æ Þ A=B).

2. А – множество корней уравнения (x-1)(x-2)=0. B – множество, состоящее из элементов 1 и 2: B={1,2}. A=B.

ГЛАВА 2

ОСНОВНЫЕ ТЕОРЕТИКО-МНОЖЕСТВЕННЫЕ ОТНОШЕНИЯ

2.1. Подмножества

Определение подмножества.Множество А является подмножеством множества В, если любой элемент, принадлежащий множеству А, принадлежит множеству В.

Формальная запись: A ÍB ó "x | xÎA Þ xÎB.

Если A является подмножеством B, то B называется надмножеством A.

Если среди данных множеств одно из них является подмножеством другого, это обозначает, что они связаны отношением включения.

Отношение нестрогого включения обозначается “Í”.

Отношение строгого включения обозначается “Ì”.

AÍB обозначает, что множество A содержится в B, при чем А может быть равным множеству B. Строгое включение исключает такое равенство.

Если AÌB, A¹Æ , то A – собственное подмножество множества В.

Наши рекомендации