Приток к скважине в пласте с прямолинейным контуром питания
Пусть в полосообразном пласте пробурена одна скважина с центром в точке О1 на расстоянии а от прямолинейного контура (ось у ) бесконечного протяжения, на котором поддерживается постоянный потенциал jк. На скважине радиуса rc поддерживается постоянный потенциал jс.
Рис. 7.6. Схема притока к скважине с прямолинейным контуром питания |
Найдём дебит скважины G и распределение функции j.Так как контур питания пласта 0уявляется эквипотенциальной линией, то все линии тока, сходящиеся в центре скважины О1, должны быть перпендикулярны к прямой 0у (рис.7.6). Для определения поля течения добьёмся выполнения граничных условий на контуре введением фиктивного источника О2 с дебитом, равным дебиту стока О1, путём зеркального отображения данного стока относительно прямой 0у.Таким образом, используем ранее упомянутый метод отображения и задачу о потоке в пласте с прямолинейным контуром питания и с одиночной эксплуатационной скважиной сведём к ранее рассмотренной в разделе 7.1.17. задаче о фильтрационном потоке от источника к стоку. Отличие данных задач только в постановке граничных условий: в задаче раздела 7.1.1. источник питания – нагнетательная скважина, а в данном случае – прямолинейный контур, а источник О2фиктивный.
Используем для определения дебита выражение (7.10), но со следующей заменой граничных условий:
j = jк при r1 = r2 ,т.е. при r1/r2 = 1;
j = jс при r1 = rс , r2 » 2а, т.е. при r1/r2 » rс /2а.
Подставляя последовательно соответствующие граничные значения j,r1 и r2 в равенство (7.10), получаем два уравнения, определяющих потенциалы на контуре и забое. Из этих уравнений легко находится массовый дебит одиночной скважины в пласте с прямолинейным контуром
. (7.14)
Если бы в пласте была нагнетательная скважина, то в формуле (7.14) достаточно только изменить знак правой части.
Приток к скважине, расположенной вблизи непроницаемой прямолинейной границы
Данная задача может возникнуть при расположении добывающей скважины вблизи сброса или около границы выклинивания продуктивного пласта. В этом случае реальную скважину-сток зеркально отображают относительно непроницаемой границы, и дебиту скважины - отображения приписывают тот же знак, что и дебиту реальной скважины. При притоке к двум равнодебитным скважинам скорость фильтрации на непроницаемой границе будет направлена вдоль границы, т.е. граница является линией тока и фильтрация через неё отсутствует. Дебит скважины определяется из уравнений (7.12) и (7.13) для n=2 в пласте с удалённым контуром питания:
. (7.15)