Методы, используемые при обучении математике (из истории)
Какфими методами обучения пользовались в древности, точно, неизвестно, но есть основания полагать, что методы эти были догматическими, бездоказательными.
И.Г.Песталоцци в книге "Как Гертруда учит своих детей", говорит о том, что арифметика - это искусство, целиком возникающее из простого соединения и разъединения нескольких единиц. Его первоначальная форма, по существу, следующая: один да один- два, от двух отнять один - остаётся один. Таким образом, первоначальная форма всякого счёта глубоко запечатлевается детьми, и для них становятся привычными с полным сознанием их внутренней правды средства, служащие для сохранения счёта, то есть числа.
В педагогических сочинениях отца русской дидактики К.Д. Ушинского говорится, что, прежде всего, следует выучить детей считать до десяти на наглядных предметах: на пальцах, орехах, и т.д., которые не жаль было бы и разломать, если придется показать наглядно половину, треть, и т.д. Считать следует учить назад и вперёд так, чтобы дети с одинаковой лёгкостью считали от единицы до десяти и от десяти до единицы. Потом следует научить считать их парами, тройками, пятёрками, чтобы дети поняли, что половина десяти равна пяти и т.д. Ушинский говорил, что надо просто "приучить дитя распоряжаться с десятком совершенно свободно - и делить, и умножать, и дробить... ".
Единой методики преподавания арифметики не существовало. Шла длительная борьба между двумя направлениями, с одним из которых связан так называемый метод изучения чисел, или монографический, а с другим — метод изучения действий, который называли вычислительным.
Согласно методу изучения чисел в разработке немецкого методиста А. В. Грубе преподавание арифметики должно идти (в пределах. 100) от числа к числу. Каждое из этих чисел, якобы доступное «непосредственному созерцанию», сравнивается с каждым из предыдущих чисел путем установления между ними разностного и кратного отношения. Действия должны как бы сами вытекать из знания наизусть состава чисел. Монографический метод получил определение метода, описывающего число. метода Грубе — Евтушевского
В процессе изучения каждого числа материалом для счета служили пальцы на руках, штрихи на доске или в тетради, палочки. Например, при изучении числа 6 предлагалось разложить палочки по одной. Задавались вопросы: «Из скольких палочек составилось наше число? Отсчитайте по одной палочке, чтобы получилось шесть. Во сколько раз шесть больше одного? Какую часть шести составляет одна палочка? Сколько раз одна палочка заключается в шести?» И т. д. Потом изучаемое число точно так же сравнивалось с числом 2, предлагалось разложить шесть палочек по две и отвечать на вопросы: «Сколько двоек в шести? Сколько раз два содержится в шести?» И т. д. Так данное число сравнивалось со всеми предшествующими (3, 4, 5). После каждой группы таких упражнений действия записывались в виде таблицы, результаты которой заучивались наизусть, с тем чтобы в дальнейшем по памяти производить все арифметические действия, не прибегая к вычислениям.
В 90-х годах под влиянием критики монографический метод обучения арифметике был несколько видоизменен немецким дидактом и психологом В. А. Лаем. Книга В. А. Лая «Руководство к первоначальному обучению арифметике, основанное на результатах дидактических опытов»
Детям показывали числовую фигуру. Они ее рассматривали, а затем описывали с закрытыми глазами расположение точек. Например, фигура, обозначающая число 4: один кружок — в левом верхнем углу, один кружок — в левом нижнем углу, один кружок — в правом верхнем углу и один кружок — в правом нижнем углу. В. А. Лай считал, что, чем отчетливее, яснее и живее наблюдение вещей, тем отчетливее, яснее и живее возникают числовые представления. За описанием следует зарисовка данной числовой фигуры и составление ее на счетах.
Последовательность обучения по монографическому методу состояла в следующем:
а) описание, наблюдение и составление некоторой числовой фигуры; б) изучение состава числа и запоминание числа; в) упражнение в арифметических действиях
Поклонник этого метода Д. Л. Волковский издал книгу «Детский мир в числах» (1912). Книга иллюстрировалась числовыми фигурами В. А. Лая, карточками и чертежами. Она была предназначена не только для начальной школы, но и для приготовительных классов женских гимназий, детских садов и домашнего обучения.
Другой метод — метод изучения действий (вычислительный) — предполагает научить детей не только вычислять, но и понимать смысл этих действий, основу десятичного исчисления. Обучение при этом строится по десятичным концентрам. В пределах каждого концентра изучаются не отдельные числа, а счет и действия. Впервые этот метод был изложен в Германии А. Дистервегом, а у нас — П. С. Гурьевым.
То, что составляет предмет математики дошкольника, нашло своё выражение в Программе детского сада, впервые разработанной и изданной Наркомпросом в 1932 году. Эта программа охватывала широкий круг математических ориентировок, знаний и навыков, намеченных для детей, начиная с младшей группы детского сада. Сюда относятся:
а) понятие количества и знакомство с числами; счёт предметов;
простейшие операции над числами;
б) понятие о величине предметов и сравнение величин;
в) ориентировка во времени;
г) ориентировка в пространстве;
д) знакомство с геометрическими формами и умение находить их в
окружающей обстановке;
е) некоторые меры и измерение ими.
Средства формирования элементарных математических представлений у детей в детском саду
В настоящее время в практике работы детских дошкольных учреждений широко распространены следующие средства формирования элементарных математических представлений:
— комплекты наглядного дидактического материала для занятий;
— оборудование для самостоятельных игр и занятий детей.
— методические пособия для воспитателя детского сада, в которых раскрывается сущность работы по формированию элементарных математических представлений у детей в каждой возрастной группе и даются примерные конспекты занятий;
— сборники дидактических игр и упражнений для формирования количественных, пространственных и временных представлений у дошкольников;
- учебно-познавательные книги для подготовки детей к усвоению математики в школе в условиях семьи.
При формировании элементарных математических представлений средства обучения выполняют разнообразные функции:
— реализуют принцип наглядности;
— адаптируют абстрактные математические понятия в доступной для малышей форме;
— помогают дошкольникам овладевать способами действий, необходимым для возникновения элементарных математических представлений;
- способствуют накоплению у детей опыта чувственного восприятия свойств, отношений, связей и зависимостей, его постоянному расширению и обогащению, помогают осуществить постепенный переход от материального к материализованному, от конкретного к абстрактному;
- дают возможность воспитателю организовывать учебно-познавательную деятельность дошкольников и управлять этой работой;
—- увеличивают объем самостоятельной познавательной деятельности детей на занятиях по математике и вне их;
— рационализируют и интенсифицируют процесс обучения.
Основным средством обучения является комплект наглядного дидактического материала для занятий. В него входит следующее:
— объекты окружающей среды, взятые в натуральном виде: разнообразные предметы быта, игрушки, посуда, пуговицы, шишки, желуди, камешки, раковины и т. д.;
— изображения предметов: плоские, контурные, цветные, на подставках и без них, нарисованные на карточках;
— графические и схематические средства: логические блоки, фигуры, карточки, таблицы, модели.
Обычно используют наглядный материал двух видов: крупный, (демонстрационный) для показа и работы детей и мелкий (раздаточный), которым ребенок пользуется, сидя за столом и выполняя одновременно со всеми задание педагога.
К демонстрационным материалам относятся:
— наборные полотна с двумя и более полосками для раскладывания на них разных плоскостных изображений: фруктов, овощей, цветов, животных и т. д.;
— геометрические фигуры, карточки с цифрами и знаками +, = . >, <;
— фланелеграф с комплектом плоскостных изображений, наклеиваемых на фланель ворсом наружу;
— мольберт для рисования, на котором крепятся две-три съемные полочки для демонстрации объемных наглядных пособий;
— магнитная доска с комплектом геометрических фигур, цифр, знаков, плоских предметных изображений;
— комплекты предметов (по 10 штук) одинакового и разного цвета, размера, объемные и плоскостные (на подставках):
— карточки н таблицы;
— модели («числовая лесенка», календарь и др.);
— логические блоки;
— панно и картинки для составления и решения арифметических задач;
— оборудование для проведения дидактических игр;
— приборы (обычные, песочные часы, чашечные весы, счеты и т. д.).
К раздаточным материалам относятся:
— мелкие предметы, объемные и плоскостные, одинаковые и разные по цвету, размеру, форме, материалу и т. д.;
— карточки, состоящие из одной, двух, трех и более полос; карточки с изображенными на них предметами, геометрическими фигурами, цифрами и знаками, карточки с гнездами, карточки с нашитыми пуговицами, карточки-лото и др.;
— наборы геометрических фигур, плоских и объемных, одинакового и разного цвета, размера;
— таблицы и модели;
— счетные палочки и т. д.
Наглядный дидактический материал служит для реализации программы развития элементарных математических представлений в процессе специально организованных упражнений на занятиях, с этой целью используют:
— пособия для обучения детей счету;
пособия для упражнений в распознавании величины предметов;
— пособия для упражнений детей в распознавании формы предметов и геометрических фигур;
— пособия для упражнения детей в пространственной ориентировке;
— пособия для упражнения детей в ориентировке во времени.
В оборудование для самостоятельных игр и занятий могут включаться:
— специальные дидактические средства для индивидуальной работы с детьми, для предварительного ознакомления с новыми игрушками и материалами;
— разнообразные дидактические игры: настольно-печатные и с предметами; обучающие, развивающие, шашки, шахматы;
— занимательный математический материал: головоломки, геометрические мозаики и конструкторы, лабиринты, задачи-шутки, задачи на трансфигурацию и т. д. с приложением там, где это необходимо, образцов (например, для игры «Танграм» требуются образцы расчлененные и нерасчлененные, контурные), наглядных инструкций и т. д.;
отдельные дидактические средства: блоки 3. Дьенеша (логические блоки), палочки X. Кюзенера.
Многие из дидактических средств, применяемых вне занятий, чрезвычайно эффективны. Примером могут служить «цветные числа» дидактический материал преподавателя из Бельгии X. Кюзенера, получивший большое распространение в детских садах за рубежом и в нашей стране. Он может использоваться, начиная с ясельных групп и кончая последними классами средней школы, «Цветные числа» это набор палочек в виде прямоугольных параллелепипедов и кубиков. Все палочки окрашены в разные цвета. Чем больше длина палочки, тем больше значение того числа, которое она выражает. Таким образом, цветом и величиной моделируется число. Имеется и плоскостной вариант цветных чисел в виде набора полосок разного цвета..
Таким же универсальным и весьма эффективным дидактическим средством являются блоки 3. Дьеиеша (логические блоки), венгерского психолога и математика
Занимательный математический материал в силу свойственной ему занимательности, скрытой в ней серьезной познавательной задачи, увлекая, развивает детей. Из занимательного математического материала в работе с дошкольниками могут использоваться самые простые его виды:
— геометрические конструкторы: «Танграм», «Пифагор», «Колумбово яйцо», «Волшебный круг» и др., в которых из набора плоских геометрических фигур требуется создать сюжетное изображение на основе силуэтного, контурного образца или по замыслу;
— «Змейка», «Волшебные шарики», «Пирамидка», «Сложи узор» и другие игрушки-головоломки, состоящие из объемных геометрических тел, вращающихся или складывающихся определенным образом;
— логические упражнения, требующие умозаключений, построенных на основе логических схем и правил;
— задачи на нахождение признака (признаков) отличия или сходства фигур (например: «Найди две одинаковые фигуры», «Чем отличаются друг от друга данные предметы?», «Какая фигура здесь лишняя?»);
— задачи на поиск недостающей фигуры, в которых, анализируя предметные или геометрические изображения, ребенок должен установить закономерность в наборе признаков, их чередовании и на этой основе осуществить выбор необходимой фигуры, достраивая ею ряд или заполняя пропущенное место;
— лабиринты — упражнения, выполняемые на наглядной основе и требующие сочетания зрительного и мыслительного анализа, точности действий дли того, чтобы найти кратчайший и верный путь от начальной до конечной точки (например: «Как мышонку выбраться из норки?», «Помоги рыбакам распутать удочки», «Угадай, кто потерял варежку»);
занимательные упражнения на распознавание частей в целом, в которых от детей требуется установить, сколько и каких фигур содержится в рисунке;
занимательные упражнения на восстановление целого из частей (собрать вазу из осколков, мячик из разноцветных частей и т. д.);
— задачи-смекалки геометрического характера с палочками от самых простых на воспроизведение по образцу узора и до составления предметных картинок, на трансфигурацию (изменить фигуру путем перекладывания указанного количества палочек);
— загадки, в которых содержатся математические элементы в виде термина, обозначающего количественные, пространственные или временные отношения;
— стихи, считалки, скороговорки и поговорки с математическими элементами;
— задачи в стихотворной форме;
— задачи-шутки и т. д.
Конспект это краткое описание, содержащее цель (программное содержание: образовательные и воспитательные задачи), перечень наглядных пособий и оборудования, освещение хода (основных частей, этапов) занятия или игры