Первое начало термодинамики.понятие теплоемкости
1. Первый закон термодинамики, установленный на основании многочисленных опытов, утверждает, что изменение внутренней энергии ΔU системы равно сумме совершаемой над системой работы A' внешних сил и количества теплоты Q, переданного системе извне.
. | (4.18) |
Этот закон можно сформулировать несколько иначе, если вместо работы A' внешних сил говорить о работе A самой системы. Поскольку A' = – A, то
, или , | (4.19) |
таким образом, полученное системой количество теплоты равно сумме изменения ее внутренней энергии и работы, совершаемой системой над внешними телами.
Соотношения (4.18) и (4.19) представляют собой математическое выражение первого закона термодинамики, который является конкретной формулировкой закона сохранения энергии применительно к тепловым процессам.
По сути дела, формулировка 1-го начала термодинамики послужила основанием для утверждения в физике понятия "энергия". С той поры оно заняло центральное место в физике, отодвинув на второй план введенное Ньютоном понятие "сила". Признание энергии как наиболее общего понятия, позволяющего рассматривать с единой точки зрения все явления и процессы, следует признать основным достижением науки XIX в.
Весь производственный и научный опыт, многочисленные экспериментальные подтверждения предсказаний, сделанные на основе первого начала, свидетельствуют о справедливости этого базового закона природы.
2. Рассмотрим систему, которая получает энергию в процессе теплообмена. Пусть для изменения температуры системы на ΔT потребовалось количество теплоты Q. Теплоемкостью системы называется величина
. | (4.20) |
Если в качестве системы рассматривать 1 моль вещества, то теплоемкость, определяемая соотношением (4.20), называется молярной теплоемкостью. Удельная теплоемкость (теплоемкость единицы массы вещества) связана с молярной теплоемкостью очевидным равенством:
. | (4.21) |
В уравнении (4.19) величина A, как было показано выше, является функцией процесса, тогда и величина Q, очевидно, зависит от условий процесса и является его функцией. ПосколькуQ есть функция процесса, то и теплоемкость, естественно, есть функция процесса и для ее определения необходимо указать условия процесса. Обычно различают теплоемкость при постоянном объеме СV (изохорный процесс) и теплоемкость при постоянном давлении СР (изобарный процесс). Воспользуемся уравнением (4.19) для определения величин СР и СV и установления соотношения между ними.
При изохорном процессе и, как следует из (4.16), работа равна нулю. При этом условии, используя (4.19) и (4.20), находим
. | (4.22) |
Для изобарного процесса, используя равенства (4.16), (4.19) и (4.22), получаем
. | (4.23) |
Уравнение (4.23) показывает, что теплоемкость СР больше СV на величину работы, совершаемой системой при ее изобарном нагревании на 1ºС.
Для моля идеального газа уравнение состояния имеет вид:
PV = RT. |
Применение этого уравнения к двум состояниям моля газа в изобарном процессе приводит к соотношению
РΔV = RΔT. | (4.24) |
Подставляя (4.24) в (4.23), получаем
CP = CV + R. | (4.25) |
Полученное уравнение называется уравнением Роберта Майера. Из сравнения уравнений (4.23) и (4.25) легко вскрыть физический смысл универсальной газовой постоянной. Эта величина, очевидно, равна работе изобарического расширения моля идеального газа при его нагревании на один Кельвин.