Основные операции весового анализа
В ходе гравиметрического определения различают следующие операции: 1) отбор средней пробы вещества и подготовку ее к анализу; 2) взятие навески; 3) растворение; 4) осаждение определяемого элемента (с пробой на полноту осаждения); 5) фильтрование; 6) промывание осадка (с пробой на полноту промывания); 7) высушивание и прокаливание осадка; 8) взвешивание; 9) вычисление результатов анализа.
Отбор средней пробы.Аналитическое определение лишь тогда приводит к содержательным выводам, когда отобранная для анализа проба является представительной по отношению к исследуемому материалу.
В производстве бывает необходимо определить средний химический состав большой партии неоднородного материала (удобрения, ядохимиката, почвы, руды и т. п.). При этом подготовка вещества к анализу сводится к правильному отбору так называемой средней пробы. Правила отбора средних проб различных материалов предусмотрены государственными стандартами или техническими условиями. Выполнение этой операции всегда подчинено единому принципу: средняя проба должна быть составлена из большого числа мелких порций, взятых в разных местах анализируемого материала. Благодаря этому состав отобранной пробы приближается к среднему химическому составу большого количества исследуемого материала.
Первичная средняя проба, отобранная тем или иным способом, еще непригодна для анализа. Обычно она слишком велика (от одного до нескольких килограммов) и неоднородна. Подготовка пробы состоит в измельчении, перемешивании и сокращении до небольшой массы (около 300 г). Для сокращения пробы пользуются так называемым квартованием . Измельченный материал перемешивают в куче, рассыпают ровным слоем в виде квадрата (или круга), делят на четыре сектора, содержимое двух противоположных секторов отбрасывают, а двух остальных — соединяют вместе. Операцию квартования повторяют многократно. Из полученного таким образом однородного материала берут навески для анализа.
Перекристаллизация.В условиях исследовательской лаборатории часто требуется найти содержание какого-нибудь элемента в химически чистом соединении (например, содержание бария в хлориде барии ВаС12•2Н20). Здесь подготовка вещества к анализу состоит и очистке его от примесей и обычно осуществляется путем перекристаллизации для удаления примесей только из кристаллических веществ, например из солей.
Применительно к пробоотбору введены следующие количественные характеристики:
1. Рабочий диапазон.A=mi — диапазон количеств определяемого компонента i, к которым применима данная методика.
2. Диапазон количества пробыP=mi+mo — диапазон общих количеств пробы, состоящий из определяемого компонента (индекс i) и "матрицы" (индекс 0) — суммы остальных компонентов. В зависимости от требуемого для анализа количества пробы методики обычно классифицируют следующим образом:
Р>100мг 100мг>Р>10мг P<10мг
макроанализ полумикроанализ микроанализ
Диапазон содержаний компонента
100mi
G = ───── %
mi+mo
В зависимости от величины Gкомпоненты пробы обычно называют следующим образом:
G> 10% | 10%>G> 1% | G< 1% |
главный компонент | сопутствующий компонент | следовый компонент |
Легко видеть, что между A, P и G существует соотношение:
P = A/G• 100%
Отсюда можно оценить минимальное (и максимальное) количество пробы, требуемое для проведения анализа по выбранной методике, если заданы величины рабочего диапазона и содержание определяемого компонента. На практике следует по возможности брать количество пробы, несколько превышающее рассчитанное.
Примеры.
Содержание определяемого вещества в пробе приблизительно 10%; методика позволяет определять не менее 0.5 мг этого вещества. Минимальное количество пробы, требуемое для анализа, составляет:
P = 0,5 мг/10•100=5мг
Максимальное количество пробы, которым располагает аналитик, составляет 10 мг, содержание определяемого компонента в ней около 0,2%. Следовательно, необходимо использовать методику, позволяющую определять не менее:
А = 0,2 • 10 мг/100 = 0,02 мг = 20 мкг
Взятие навески
Навеской называют количество вещества, необходимое для выполнения анализа.
Как правило, чем больше навеска, тем выше и относительная точность определения. Однако работа с большой навеской имеет свои отрицательные стороны: получающийся при этом большой осадок трудно отфильтровать, промыть или прокалить, анализ занимает много времени. Наоборот, при слишком малой навеске ошибки взвешиваний и других операций, неизбежные при анализе, значительно снижают точность определения.
Таким образом, выбор величины навески анализируемого вещества определяется количеством осадка, наиболее удобным в работе. Например, на бумажном фильтре диаметром 7 см можно легко отфильтровать 0,5 г кристаллического сульфата бария ВаSО4. Но с таким же количеством аморфных, студенистых осадков гидрооксидов Fe(OH)3, Al(OH)3 работать чрезвычайно трудно.
Аналитической практикой установлено, что наиболее удобны в работе кристаллические осадки с массой около 0,5 г и объемистые аморфные осадки с массой 0,1—0,3 г. Учитывая эти нормы осадков и зная приблизительное содержание определяемого элемента в веществе, вычисляют необходимую величину навески.
Пример.Какую навеску хлорида бария BaCl2• 2H2O нужно взять для определения содержания в нем бария?
Исходные данные: формула осадка BaSO4; норма кристаллического осадка 0,5 г.
Решение. Величину навески находят из пропорции:
233,43 г | BaSO4 | получаются из | 244,31 г | BaCl2•2H2O |
0,5 г | BaSO4 | » » » | Х г | BaCl2•2H2O |
X= 0,52 г.
Ответ: для анализа следует взять навеску хлорида бария ВаС12•2Н2О около 0,5— 0,6 г.
Иногда, выбирая навеску, учитывают необходимую точность определения и возможные потери из-за растворимости осадка.
Разумеется, выбор навески зависит еще от метода, с помощью которого будет выполняться определение (макро-, полумикро- или микроанализ). Мы рассмотрели случай выбора навески при макроанализе.
При определениях, не связанных с получением осадка, например при изучении влажности или зольности различных материалов, допустимы навески в 1,0—2,0 г, а иногда и больше. Вещество взвешивают в специальном стаканчике — бюксе.