Возврат к ненормированным факторам

Матрица ПФЭ в общем виде

В общем виде матрица полного факторного эксперимента с n факторами имеет вид

Свойства матрицы ПФЭ

Число строк в матрице равно 2n;

Нулевой столбец матрицы состоит из единиц.

В столбцах 1…n находятся все возможные 2n сочетаний значений −1 и +1;

В последнем столбце находятся результаты измерений, полученные при значениях факторов, записанных в соответствующих строках в столбцах 1…n.

Сумма элементов нулевого столбца всегда равна 2n

Сумма элементов любого столбца, кроме нулевого и последнего, равна нулю

Вычисление коэффициентов линейной модели

Коэффициенты линейной модели в нормированных координатах вычисляются по формулам:

Коэффициенты линейной модели в естественных (ненормированных) координатах вычисляются по формулам:

Преобразование естественных факторов в нормированные и обратно

Пример планирования двухфакторного эксперимента

Матрица эксперимента

Предположим, исходные параметры технологического процесса составляют: толщина плёнки 55 мкм, время экспозиции — 30 с, то есть

Возьмём верхние и нижние значения обоих факторов так, чтобы они располагались симметрично относительно текущего значения, например

Составим таблицу, в которой значения обоих факторов находятся во всех возможных сочетаниях и проведём измерения в этих точках (значения отклика даны условно):

Полагая, что линейная модель процесса имеет вид

на основании полученных результатов можно составить систему четырёх уравнений с двумя переменными. Ниже показана эта система, а также её сокращённая запись в виде матрицы. Матрицу данного вида назовём матрицей эксперимента.

В матрице эксперимента второй и третий столбцы представляют собой значения факторов, четвёртый столбец — значения отклика системы, а первый столбец содержит единицы, соответствующие единичным коэффициентам свободного члена модели a0 Будем считать этот столбец некоторым виртуальным фактором х0 , который всегда принимает единичные значения.

Чтобы облегчить решение системы, проведём нормировку факторов. Верхним значениям факторов присвоим нормированное значение +1, нижним значениям — нормированное значение −1, среднему значению — нормированное значение 0. В общем виде нормировка фактора выражается формулой

С учётом нормировки факторов система уравнений и матрица эксперимента примут следующий вид:

Поскольку сумма членов во втором и третьем столбце матрицы равны нулю, свободный член модели можно найти, сложив все четыре уравнения:

Чтобы найти какой-либо другой коэффициент модели, нужно изменить знаки в уравнениях таким образом, чтобы в соответствующем столбце оказались одни единицы, после чего сложить все четыре уравнения:

Таким образом, линейная модель технологического процесса в окрестностях точки (55, 30) имеет вид

В общем случае решение системы будет выглядеть как

Возврат к ненормированным факторам

Переход от нормированных к ненормированным факторам осуществляется обратным преобразованием

Чтобы найти параметры модели для ненормированных координат, подставим выражения для нормированных координат в уравнение модели

Сравнивая последнее выражение с выражением для линейной модели в ненормированных координатах

получим выражения для параметров модели:

В общем случае

Для приведённого выше примера

Окончательно получаем модель в естественных координатах:

Наши рекомендации