Возврат к ненормированным факторам
Матрица ПФЭ в общем виде
В общем виде матрица полного факторного эксперимента с n факторами имеет вид
Свойства матрицы ПФЭ
Число строк в матрице равно 2n;
Нулевой столбец матрицы состоит из единиц.
В столбцах 1…n находятся все возможные 2n сочетаний значений −1 и +1;
В последнем столбце находятся результаты измерений, полученные при значениях факторов, записанных в соответствующих строках в столбцах 1…n.
Сумма элементов нулевого столбца всегда равна 2n
Сумма элементов любого столбца, кроме нулевого и последнего, равна нулю
Вычисление коэффициентов линейной модели
Коэффициенты линейной модели в нормированных координатах вычисляются по формулам:
Коэффициенты линейной модели в естественных (ненормированных) координатах вычисляются по формулам:
Преобразование естественных факторов в нормированные и обратно
Пример планирования двухфакторного эксперимента
Матрица эксперимента
Предположим, исходные параметры технологического процесса составляют: толщина плёнки 55 мкм, время экспозиции — 30 с, то есть
Возьмём верхние и нижние значения обоих факторов так, чтобы они располагались симметрично относительно текущего значения, например
Составим таблицу, в которой значения обоих факторов находятся во всех возможных сочетаниях и проведём измерения в этих точках (значения отклика даны условно):
Полагая, что линейная модель процесса имеет вид
на основании полученных результатов можно составить систему четырёх уравнений с двумя переменными. Ниже показана эта система, а также её сокращённая запись в виде матрицы. Матрицу данного вида назовём матрицей эксперимента.
В матрице эксперимента второй и третий столбцы представляют собой значения факторов, четвёртый столбец — значения отклика системы, а первый столбец содержит единицы, соответствующие единичным коэффициентам свободного члена модели a0 Будем считать этот столбец некоторым виртуальным фактором х0 , который всегда принимает единичные значения.
Чтобы облегчить решение системы, проведём нормировку факторов. Верхним значениям факторов присвоим нормированное значение +1, нижним значениям — нормированное значение −1, среднему значению — нормированное значение 0. В общем виде нормировка фактора выражается формулой
С учётом нормировки факторов система уравнений и матрица эксперимента примут следующий вид:
Поскольку сумма членов во втором и третьем столбце матрицы равны нулю, свободный член модели можно найти, сложив все четыре уравнения:
Чтобы найти какой-либо другой коэффициент модели, нужно изменить знаки в уравнениях таким образом, чтобы в соответствующем столбце оказались одни единицы, после чего сложить все четыре уравнения:
Таким образом, линейная модель технологического процесса в окрестностях точки (55, 30) имеет вид
В общем случае решение системы будет выглядеть как
Возврат к ненормированным факторам
Переход от нормированных к ненормированным факторам осуществляется обратным преобразованием
Чтобы найти параметры модели для ненормированных координат, подставим выражения для нормированных координат в уравнение модели
Сравнивая последнее выражение с выражением для линейной модели в ненормированных координатах
получим выражения для параметров модели:
В общем случае
Для приведённого выше примера
Окончательно получаем модель в естественных координатах: