Логика в Древней Греции
В Древней Греции логическую форму доказательства в виде цепи дедуктивных умозаключений мы встречаем в элейской школе (уПарменида и Зенона). Гераклит Эфесский выступает с учением о всеобщем движении и изменении. Для древнегреческой философии характерно возникновение и борьба различных философских школ и направлений.
В древнегреческой философии в середине V в. до н. э. появились так называемые софисты (Протатор, Горгий и др.), которые главным предметом своего философского исследования делают не природу (как это было до них), а человека и его деятельность, в том числе этику, риторику, грамматику. Протагор, Горгий и Трасимах впервые в Греции создали теорию риторики. Софисты критиковали и религию, и материалистическую философию. Разрабатывая теорию красноречия, софисты затрагивали и вопросы логики. Протагор написал специальное сочинение «Искусство спорить». Протагор — мастер спорить; он разъезжал по Греции, устраивал диспуты, привлекавшие многочисленных слушателей. По выражению античного автора Диогена Лаэртского, «нынешнее племя спорщиков берет свое начало от него».
Протагор первым стал применять «сократический способ беседы». Этот метод заключался в постановке собеседнику вопросов и показе ошибочности его ответов. Поэтому Протагор стал изучать виды умозаключений в плане логических приемов в речи ораторов. Позднее это сделал Аристотель в его «Топике». Сочинение Протагора «Тяжба о плате» (вы уже познакомились с ним на с. 201) посвящено знаменитому софизму, относящемуся к спору Протагора с его учеником Эватлом.
Против софистов выступил выдающийся материалист Древней Греции Демокрит (460—370 до н. э.), создавший всеобъемлющую философскую систему, включающую учение о бытии, космологию, теорию познания, логику, этику, политику, эстетику и ряд других областей научного знания: математику, физику, биологию, медицину, филологию и др. Демокрит — творец первой системы логики в Древней Греции, написавший специальный трактат «О логике, или Каноны» (в трех книгах; название «Каноны» означает «критерии», «правила»). До нас, к сожалению,
дошли лишь незначительные отрывки. В книге «О логике» Демокрит выступает против софистов, отрицавших объективную истину. Демокрит строит логику на эмпирической основе, поэтому он — один из создателей индуктивной логики. Демокрит рассматривал суждения, выделяя в них субъект и предикат, а также рассматривал определения понятий.
В «Канонах» было изложено учение Демокрита о видах знания. Вопросы логики здесь не отделялись от теории познания. Последователями Демокрита были философы эпикурейской школы. Демокритовско-эпикурейское направление в логике предвосхитило индуктивную логику Ф. Бэкона и противостояло идеалистической сократо-платоновской логике.
Проблемами логики занимались и древнегреческие философы — Сократ (около 469—399 до н. э.) и Платон (428—347 до н. э.). У Сократа на первый план была выдвинута проблема метода, посредством которого можно получить истинное знание. Сократ считал, что любой предмет может быть познан лишь в том случае, если его свести к общему понятию и судить о нем на основе этого понятия. Поэтому он предлагал собеседнику дать определения ряду понятий, таких, например, как «справедливость», «несправедливость», «храбрость», «красота» и т. п.
Сократовский метод использовался так. На вопрос Сократа, что такое несправедливость, отвечающий давал поверхностное, непродуманное определение. Взяв отдельные случаи из повседневной жизни, Сократ показывал, что определение, которое давал отвечающий, оказывается ошибочным или недостаточным и подводил к исправлению его. Новое определение (дефиниция) опять проверялось, дополнялось и т. д. Например, давая определение понятию «несправедливость», в качестве несправедливых люди называли такие действия, как лганьё, обман, делание зла, обращение в рабство и т. п. Но затем выяснялось, что во время войны с врагами эти действия не подпадают под понятие несправедливости. Первоначальное определение ограничивается: действия эти являются несправедливыми только по отношению к друзьям. Но и новое определение недостаточно. Ведь тот, кто обманом заставляет своего больного ребенка принять лекарство или отнимает меч у друга при его попытке к самоубийству, не совершает несправедливого поступка. Следовательно, только тот совершает несправедливость против друзей, кто это делает с намерением им повредить.
Знание Сократ понимает как усмотрение общего (или единого) для целого ряда вещей (или их признаков). Знание есть, таким образом, понятие о предмете, и достигается оно посредством определения понятия. При этом усматривается как сходство или общность предметов, подходящих под данное понятие, так и различия между тем, что подходит под данное понятие, и тем, что подходит под сходное или смежные с ним понятия. УчениеСократа о знании как об определении общих понятий и применявшиеся Сократом индуктивные приемы определения этических понятий сыграли заметную роль в развитии логики.
Учение Сократа о знании развил его ученик Платон в теории «видов» или «идей», создавший систему объективного идеализма, утверждавшую существование духовного первоначала вне и независимо от человеческого сознания. Свою школу Платон основал в Афинах, создав там Академию. Платон общие понятия Сократа, говорящие о сущностях вещей, превратил в абсолютные идеи, которые существуют сами по себе, вне познающего субъекта, и независимо от материального мира. И считал эти идеи первичными, вечными и неизменными, образующими особый потусторонний мир. Материальный мир, по Платону, вторичен, он изменчив, и в нем отражаются вечные, неизменные идеи, которые являются прообразами всех существующих материальных вещей, а вещи эти — только «тени» идей.
В своей деятельности Платон значительное место отводил вопросам теории познания и логики. Платон стремился образовать понятие и затем осуществить деление понятия на его виды, излюбленным логическим приемом которого была дихотомия, т. е. деление понятия А на В и не-В (например, животные делятся на позвоночных и беспозвоночных). Он сформулировал два правила для деления понятий, а теорию суждения развил в диалоге «Софист». Платон отличал отношение различия от отношения противоположности.
В школе Платона много занимались определениями, в частности определениями предметов органической и неорганической природы. Платону принадлежит следующее определение человека: «Человек есть двуногое животное без перьев». Услышав об этом, Диоген, ощипав петуха, принес его в Академию и во время лекции Платона выпустил его со словами: «Вот человек Платона». Платон признал свою ошибку и внес в свое определение поправку: «Человек есть двуногое животное без перьев с широкими ногтями».
Один из величайших ученых и философов древности — Аристотель (384—322 до н. э.). Он родился в городе Стагире, поэтому его называют Стагиритом. Глубокие сочинения Аристотеля посвящены многообразным отраслям современного ему знания: философии, логике, физике, астрономии, биологии, психологии, этике, эстетике, риторике и другим наукам.
В течение 20 лет Аристотель был учеником в школе Платона. Через 12 лет после смерти Платона Аристотель основал в Афинах свою философскую школу (перипатетическую, или Ликей). Общее число написанных им работ приближается к тысяче.
Аристотель впервые дал систематическое изложение логики. Логику Аристотеля называют «традиционной» формальной логикой. Традиционная формальная логика включала и включает
такие разделы, как понятие, суждение, законы (принципы) правильного мышления, умозаключения (дедуктивные, индуктивные, по аналогии), логические основы теории аргументации, гипотеза. Основными работами Аристотеля по логике являются «Первая аналитика» и «Вторая аналитика», в которых дана теория силлогизма, определение и деление понятий, теория доказательства. Логическими сочинениями Аристотеля являются также «Топика», содержащая учение о вероятных «диалектических» доказательствах, «Категории», «Об опровержении софистических аргументов», «Об истолковании». Византийские логики позже объединили все перечисленные работы Аристотеля под общим названием «Органон» (орудие познания)4.
Законы правильного мышления: закон тождества, закон непротиворечия, закон исключенного третьего — Аристотель изложил также в своем главном произведении «Метафизика». Аристотель законы мышления рассматривал первоначально как законы бытия, а логические формы истинного мышления считал отображением реальных отношений.
Для Аристотеля истина есть соответствие мысли с действительностью. Истинным он считал суждение, в котором понятия соединены между собой так, как связаны между собой вещи в природе. А ложным — суждение, которое соединяет то, что разъединено в природе, или разъединяет то, что связано в ней. Аристотель, опираясь на эту концепцию истины, создал свою логику. В «Аналитиках» он довольно основательно разрабатывает модальную логику.
Аристотель видел в логике орудие, или метод, исследования. Основным содержанием аристотелевской логики является теория дедукции. В логике Аристотеля содержатся элементы математической (символической) логики, у него имеются начатки исчисления высказываний.
Дальнейшая разработка логики высказываний, и в том числе теории условных и разделительных умозаключений, была осуществлена логиками мегаро-стоической школы (учение, известное под названием «логики стоиков»). Основатели стои — Зенон (333—261 до н. э.) и Хризипп (282—206 до н. э.).
Логика, по их учению, должна изучать и словесные знаки, и обозначаемые ими мысли. А назначение логики они видели в задаче научить правильно судить о вещах, освободить ум от заблуждений. Стоики делили логику на диалектику и риторику. Таким образом, они выходили за ограниченные рамки формальной логики.
К сожалению, до нас дошли лишь отдельные отрывки из логического учения мегариков и стоиков. Логики этой школы дали анализ логических терминов: отрицания, конъюнкции, дизъюнкции, импликации. В результате дискуссии об импликации у них выявились четыре различных ее понимания. Мегарик Ев-булид открыл первый известный нам из истории семантический парадокс под названием «Лжец».
Логика Древнего Китая3
Под логикой Древнего Китая, по утверждению Пань Шимо, принято прежде всего понимать логику периода Чуньцю и Чжа-ньго (722—221 до н. э.), когда появляется понятие «философская дискуссия» и создается ситуация, известная как «соперничество ста школ». Ученые исследуют теорию имен, понятий, вопросы об искусстве спора (дискуссии). Такими мыслителями являлись: Дэн Си (ок. 545—501 до н. э.), Великий Конфуций (551—501 до н. э.), Хуэй Ши (ок. 370-318 до н. э.), Гун Суньлун (ок. 325—250 до н. э.), Моцзы (ок. 490—403 до н. э.), Сюньцзы (ок. 313—238 до н. э.), Хадьфейцзы (ок. 280—233 до н. э.) и др.6
Пань Шимо так характеризует достижения различных школ того периода: «Усилиями школы имен (минцзя), школы законников (фацзя), конфуцианской школы (жуцзя) и особенно школы поздних моистов (моцзя) была создана более или менее целостная логическая концепция. В Древнем Китае большинство логических теорий было рассеяно по различным трактатам, посвященным вопросам политики, философии, этики и естествознания. Поздние монеты обобщили достижения своих предшественников, взяв при этом за основу учение Моцзы, и создали первый в истории китайской логики энциклопедический трактат «Мобянь» (Рассуждения Моцзы), называемый также «Моцзиы» (трактат Моцзы)»7.
Автор статьи «Логика Древнего Китая» дает концентрированную интересную информацию о тех проблемах, которые разрабатывались в логических теориях периода ранний Цинь: 1) теория имени; 2) теория «цы» (высказываний); 3) теория «шо» (рассуждения) и «бянь» (спора); 4) об основных законах мышления. В статье отмечается ряд особенностей логики Древнего Китая:
а) логические теории концентрировались вокруг основных понятий — «мин» (имени) и «цы» (предложения, высказывания);
б) развитие логики было тесно связано с языком того времени; не обращалось внимания на различие между логической природой «мин» и «цы» и их языковыми свойствами;
в) логика этого периода «обычно исходила из практических требований риторики (способы ведения спора) и познавательного аспекта дискуссии... Логика Древнего Китая не смогла выработать строгих представлений о формах умозаключений и отделить их от теории познания»8, так как придавала чрезмерное значение содержательной стороне мышления и пренебрегала его формой;
г) логика в Древнем Китае находилась под сильным влиянием различных политических доктрин и морально-этических концепций.
В результате обстоятельного анализа Пань Шимо сформулировал следующий вывод: «Хотя логические концепции в Древнем Китае и сформулировались раньше, чем в Древней Греции, но после периода ранний Цинь они практически прекратили свое дальнейшее развитие. Это одна из причин того, что логика в Китае не достигла той зрелости, которой она достигла на Западе»9.
Логика в средние века
Средневековая логика (VI—XV вв.) изучена еще недостаточно. В средние века теоретический поиск в логике развернулся главным образом по проблеме истолкования природы общих понятий. Так называемые реалисты, продолжая идеалистическую линию Платона, считали, что общие понятия существуют реально, вне и независимо от единичных вещей. Номиналисты же, напротив, считали, что реально существуют только единичные предметы, а общие понятия — лишь имена, названия для них. Оба взгляда были неправильными, однако номинализм был ближе к материализму.
Сформулируем основные проблемы, которые разрабатывались в средневековой логике: проблемы модальной логики, анализ выделяющих и исключающих суждений, теория логического следования, теория семантических парадоксов (логики в средние века усиленно занимались их анализом, например парадокса «Лжец» и др., и предлагали разнообразные решения).
Теоретические источники средневековой арабоязычной логики следует искать в логике Аристотеля. Основателем арабоязычной логики считается сирийский математик аль-Фараби (870—950), который прокомментировал весь аристотелевский «Органон». Логика аль-Фараби направлена на анализ научного мышления. Им исследуются и вопросы теории познания, и грамматики. У него, как и у Аристотеля, метод мышления соотносится с реальными отношениями и связями бытия. Аристотель был «духовным наставником» аль-Фараби в области логики.
Аль-Фараби выделяет в логике две ступени: первая охватывает представления и понятия, вторая — теорию суждений, выводов и доказательств.
Сирийская логика послужила посредником между античной и арабоязычной наукой. Историки логики признают влияние логики арабов на развитие европейской логики в средние века.
Таджик Ибн Сина (Авиценна; 980—1037) комментирует Аристотеля и сам пытается развить логику. Авиценне известна зависимость между категорическими и условными суждениями, выражение импликации через дизъюнкцию и отрицание, т. е. формула В учебнике «Логика» Ибн Сина стремился обобщить аристотелевскую силлогистику. Вначале Ибн Сина, П. С. Порецкий, Е. Л. Буницкий и др., внесли существенный вклад в развитие логики на уровне мировых логических концепций.
Трактат по логике впервые появился в России в X в. Это был перевод философской главы из «Диалектики» византийского писателя VII в. Иоанна Дамаскина, представлявшей собой изложение работ Аристотеля и его комментаторов. Первое систематическое учебное пособие по логике, включавшее аристотелевскую логику и отдельные идеи Гоббса, было подготовлено во второй половине XVII в. Тогда же в России начали распространяться отдельные идеи математической логики.
В XVIII в. в России появляются оригинальные логические работы. Первых результатов добивается русский ученый-естествоиспытатель мирового значения Михаил Васильевич Ломоносов (1711—1765). Он вносит существенные изменения в традиционную силлогистику, предлагая свою классификацию умозаключений, отграничивает суждение от грамматического предложения и др. Дмитрий Сергеевич Аничков (1733—1788) в трактате «Заметки по логике» (Annotationes in logicam, metaphysicam et cosmologiam) исследовал модальные суждения, подразделяя их на четыре вида: необходимые, невозможные, возможные и не невозможные, сформулировал систему правил для ведения диспутов.
Философ-материалист Александр Николаевич Радищев (1749—1802) одним из первых в мировой литературе поставил проблему необходимости логического анализа отношений, которого нет ни в логике Аристотеля, ни в логике средневековых схоластов. Он считал, что суждения представляют сравнение двух понятий или в суждениях выражено познание отношений, существующих между вещами. А. Н. Радищев дает следующую классификацию умозаключений11: 1) «рассуждение» (т. е. силлогизм); 2) «уравнение», т. е. умозаключения равенства, основанные на следующей аксиоме: равные и одинаковые вещи состоят в равном либо одинаковом союзе или отношении; 3) «умозаключения по сходству».
Крупнейшими русскими логиками XIX в. в России были Михаил Иванович Каринский (1840—1917) и его ученик Леонид Васильевич Рутковский (1859—1920), основные логические работы которых посвящены классификации умозаключений.
Основной замысел логической теории Каринского можно характеризовать как стремление построить аксиоматике -дедуктивную систему логики, исходя из основного отношения равенства (т. е. «тождества»), и в ней описать дедуктивные и индуктивные умозаключения, не используя элементов строгой формализации. Каринский в этой концепции примыкает к идеям Джевонса, что отметили уже его современники.
Структура умозаключения, по Каринскому, такая. Из двух посылок, имеющих структуру (1) и (2), делается заключение (3).
А находится в отношении R к В: (1)
В тождествен с С. (2)
__
А находится в отношении R к С. (3)
Приведем примеры.
Москва находится восточнее Парижа.
Париж — столица Франции.
_____
Москва находится восточнее столицы Франции.
Самара находится западнее озера Байкал.
Озеро Байкал — самое глубокое озеро мира.
_________
Самара находится западнее самого глубокого озера мира.
Все выводы М. И. Каринский делит на две большие группы: 1) выводы, основанные на «сличении субъектов» и 2) выводы, основанные на «сличении предикатов» (при этом смысл терминов «субъект» и «предикат» не совпадает с соответствующим им традиционным пониманием). Основанием выводов является тождество (или соответственно различие) «субъектов» или «предикатов». В эти две большие группы, по мнению Карийского, можно отнести все виды умозаключений и, кроме них, еще и гипотезу.
Исследуя работы по логике М. И. Каринского, историк логики Н. И. Стяжкин отмечал, что Каринский стремился охватить в своей классификации все виды умозаключений, встречающиеся в практике научного и общечеловеческого мышления. Но поставленная задача оказалась шире, чем принятые Каринским и положенные в основу его теории предпосылки. Она осталась невыполненной.
Л. В. Рутковский — автор работы «Основные типы умозаключений» (1888). Если Каринский строил теорию выводов, используя лишь отношение тождества, и пытался свести к нему все другие отношения, то Рутковский считает возможным признать равноправными с отношением тождества и другие отношения, например отношения сходства, сосуществования и др. Так как существует многообразие отношений, имеется и многообразие видов логических выводов (т. е. видов умозаключений). Умозаключения делятся им на интенсивные (т. е. рассматриваемые в логике содержания) и экстенсивные (рассматриваемые в логике объема).
Рутковский делит все выводы на две основные группы. Первая группа — выводы подлежащих (т. е. выводы по объему) — распадается на три вида: а) традукцию (выводы сходства, тождест-ва, условной зависимости); б) индукцию (полную и неполную); в) дедукцию (гипотетическую и негипотетическую).
Вторая группа выводов — выводы сказуемых (по содержанию) — распадается на выводы «продукции» (разделительный силлогизм, выводы о совместности, современности предметов и др.), «субдукции» (выводы при классификациях и упорядочении предметов и др.), «эдукции» (отнесение предмета к виду его класса, заключения математической вероятности и др.).
Аксиома «продукции» такова: «Из того, что предмет имеет признак В, следует, что этот же предмет имеет и признак С, так как признак В неизменно сосуществует с признаком С»12.
Краткий анализ работ М. И. Каринского и Л. В. Рутковс-кого показывает, что их оригинальные работы по классификации видов умозаключений способствовали прогрессивному развитию традиционной логики в XIX в.
Оригинальными были идеи казанского логика Николая Александровича Васильева (1880—1940). Они возникли в результате изучения проблем традиционной логики, но их значение было столь большим, что оказало влияние на развитие математической логики. Он вслед за другим русским логиком С. О. Шатуновским высказал идею о неуниверсальности закона исключенного третьего. Если Шатуновский пришел к этой идее в результате тщательного изучения особенностей математического доказательства применительно к бесконечным множествам, то Н. А. Васильев пришел к этому выводу в результате изучения частных суждений, рассматриваемых в традиционной логике. Основными работами Н. А. Васильева являются следующие: «О частных суждениях, о треугольнике противоположностей и о законе исключенного четвертого» (1910), «Воображаемая (неаристотелева) логика» (1912) и «Логика и металoгика». Н. А. Васильев подкреплял свои концепции формальной аналогией с неевклидовой геометрией Н. И. Лобачевского. Не все современники Васильева оценили его идеи, хотя некоторые из них считали, что он написал «остроумнейшую работу». Логические идеи Васильева можно рассматривать как некоторые предшествующие мысли, развитые далее в конструктивной и интуиционистской логиках, о неприменимости принципа исключенного третьего для бесконечных множеств. Васильев, кроме того, рассматривает условия, при которых представляется возможным оперировать с противоречивыми высказываниями внутри непротиворечивой логической системы.
В XIX в. появляется математическая логика. Немецкий философ Г.В.Лейбниц (1646—1716) — величайший математик и крупный философ XVII в. — по праву считается ее основоположником. Лейбниц пытался создать универсальный язык, с помощью которого споры между людьми можно было бы разрешать посредством вычисления. При построении такого исчисления Лейбниц исходил из «основного принципа разума», который гласил, что во всех истинных предложениях, общих или частных, с необходимостью или случайно предикат содержится в субъекте. Он хотел всякому понятию дать числовую характеристику и установить такие правила оперирования с этими числами, которые позволили бы не только доказывать вообще все истины, доступные логическому доказательству, но и открывать новые. В надежде, что так люди смогут открывать новые истины, он видел особую заслугу своей всеобщей характеристики. Лейбниц говорил о ней как о чудесном общем языке, имеющем свой словарь (т. е. характеристические числа, отнесенные к понятиям) и свою грамматику (правила оперирования с этими числами). Лейбниц хотел построить арифметизированное логическое исчисление в виде некоторой вычисляющей машины (алгоритма). Однако этого ему сделать не удалось.
В этой концепции Лейбница неприемлемо прежде всего то, что все содержание наших понятий якобы может быть выражено их характеристическими числами. Несостоятельным было представление Лейбница и о том, что человеческое мышление может быть полностью заменено вычисляющей машиной.
Лейбниц полагал, что математику можно свести к логике, а логику считал априорной наукой. Сторонников такого обоснования математики называют логицистами — представителями субъективного идеалистического направления.
Лейбниц является предшественником логицизма в том смысле, что он предложил сведение математики к логике и математизацию логики: построение самой логики как некоторой арифметики или буквенной алгебры. Но Лейбниц был предшественником логицизма и в том, что пытался создать арифметизированное логическое исчисление, о котором мы говорили.
Покажем, как это делал Лейбниц. Возьмем такой категорический силлогизм:
+ 70, -33 +10, -3
Всякий мудрый есть благочестивый.
+ 70, -33 +8, -11
Некоторые мудрые есть богаты.
_____
+ 8, -11 +10, -3
Некоторые богатые есть благочестивы.
Сверху над понятиями написан выбранный наудачу правильный набор характеристических чисел для терминов посылок (мудрый, благочестивый, богатый). Истинность общеутвердительного суждения «Все S есть Р» (первая посылка) выражается тем, что обе характеристики субъекта делятся на соответствующие характеристики предиката, т. е. 70 (точно, без остатка) делится на 10, а —33 делится на —3, и числа, стоящие на диагоналях, взаимно простые, т. е. + 70 и — 3, так же как — 33 и +10, взаимно простые числа. Истинность частноутвердительного суждения, по Лейбницу, должна выражаться таким правилом: числа, стоящие на диагоналях, должны быть взаимно простыми, т. е. не иметь общих делителей, кроме единицы.
Посылка «Некоторые мудрые — богаты» имеет такие числа:
т. е. на обеих диагоналях стоят взаимно простые числа.
И заключение этому правилу также удовлетворяет, ибо на диагоналях стоят взаимно простые числа:
Истинность общеотрицательного суждения «Ни одно S не есть Р»у Лейбница выражалась тем, что по крайней мере на одной диагонали стоят не взаимно простые числа. Истинность частноотрицательного суждения выражалась тем, что по крайней мере одна из характеристик субъекта не делится на соответствующую характеристику предиката.
Чтобы воспользоваться исчислением Лейбница, люди должны были свое рассуждение облечь в форму силлогизма и посмотреть, правильный он или неправильный. Однако построенная Лейбницем система удовлетворяла этому требованию только в применении к правильным, по Аристотелю, построенным силлогизмам. Автором настоящего пособия доказано, что все 19 правильных, по Аристотелю, модусов силлогизма окажутся правильными и по критерию Лейбница. Но в отношении неправильных модусов категорического силлогизма Аристотеля дело обстоит по-иному. Всегда можно построить такой пример, когда при разных правильных наборах числовых характеристик для посыпок получаются разные оценки заключения: в одних случаях оно оказывается истинным, в других — ложным.
Исчисление Лейбница, таким образом, не выдержало проверки, что, конечно, заметил и сам Лейбниц, перешедший в дальнейшем к построению буквенного исчисления по образцу алгебры. Но тоже неудачно.
Однако в этих замыслах Лейбница не все было порочным. Сам по себе метод арифметизации в математической логике играет весьма существенную роль как вспомогательный прием. В нем состоит, например, сущность метода, с помощью которого известный австрийский математик и логик К. Гёдель доказал неосуществимость Лейбницевой мечты о создании такой всеобщей характеристики, которая позволит заменить все человеческое мышление вычислениями.
Ложной была именно метафизическая идея Лейбница о сведении всего человеческого мышления к некоторому математическому исчислению. Поэтому были ложны и вытекающие из нее следствия.
Интенсивное развитие математическая логика получила также в работах Д. Буля, Э. Шредера, С. Джевонса, П. С. Порецкого и других логиков.
Английский логик Джордж Буль (1815—1864) разрабатывал алгебру логики — один из разделов математической логики. Предметом его изучения были классы (как объемы понятий), соотношения между ними и связанные с этим операции. Буль переносит на логику законы и правила алгебраических действий.
В работе «Исследование законов мысли»13, которая оказала большое влияние на развитие логики, Буль ввел в логику классов в качестве основных операций сложение («+»), умножение («х» или возможен пропуск знака) и вычитание («—»). В исчислении классов сложение соответствует объединению классов, исключая их общую часть, а умножение — пересечению. Вычитание Буль рассматривал как действие, противоположное (opposite) сложению, — отделение части от целого, то, что в естественном языке выражается словом «кроме» (except).
Буль ввел в свою систему логические равенства, которые он записывал посредством знака «=», соответствующего связке «есть». Суждение «Светила есть солнца и планеты» в виде равенства им записывается так: x = y + z, откуда следует, что x—z = y. Согласно Булю, в логике, как и в алгебре, можно переносить члены из одной части равенства в другую с обратным знаком. Буль открыл закон коммутативности для вычитания (х-у = -у+х)и закон дистрибутивности умножения относительно вычитания (z (χ—y) = zx—zy). Он сформулировал общее правило для вычитания: «Если от равных вычесть равные, то остатки будут равными. Из этого следует, что мы можем складывать или вычитать равенства и употреблять правило транспозиции точно так же, как в общей алгебре»14.
Предметом исследования ученого были также высказывания (в традиционной логике их называют суждениями). В исчислении высказываний, по Булю, сложение («+») соответствует строгой дизъюнкции, а умножение (« х » или пропуск знака) — конъюнкции.
Чтобы высказывание записать в символической форме, Буль составляет логическое равенство. Если какой-либо из терминов высказывания не распределен, он вводит термин V для обозначения класса, неопределенного в некотором отношении. Для того чтобы выразить частноотрицательное суждение, например «Некоторые люди не являются благоразумными», Буль сначала представляет его в форме «Некоторые люди являются неблагоразумными)), а затем выражает в символах обычным способом.
По Булю, существует три типа символического выражения суждений: X=VY (только предикат не распределен): Χ=V (оба термина — субъект и предикат — распределены); VX=VY (оба термина не распределены).
Диалектика соотношения утверждения и отрицания в понятиях и суждениях у Буля такова: без отрицания не существует утверждения, и, наоборот, во всяком утверждении содержится отрицание. Утверждения и отрицания связаны с универсальным классом: «Сознание допускает существование универсума не априори, как факт, не зависящий от опыта, но либо апостериори, как дедукцию из опыта, либо гипотетически, как основание возможности утвердительного рассуждения»15.
Различая живой разговорный язык и «язык» символический, Буль подчеркивал, что язык символов лишь вспомогательное средство для изучения человеческого мышления и его законов.
Немецкий математик Эрнст Шрёдер (1841—1902) собрал и обобщил результаты Буля и его ближайших последователей. Он ввел в употребление термин «Logikkalkul» (логическое исчисление), новые по сравнению с Булем символы. В основу исчисления классов он положил не отношение равенства, как это было у Буля, а отношение включения класса в класс, которое обозначал как Знак «+» Буль использовал для обозначения объединения классов, исключая их общую часть, т. е. симметрическую разность (см. рис. 8), а у Шрёдера знак «+» обозначает объединение классов без исключения их общей части (см. рис. 11).
Пропуском знака Шрёдер обозначает операцию пересечения классов, например ab. Применительно к высказываниям формой α+b он обозначает нестрогую дизъюнкцию.
Во взглядах Э. Шредера на отрицание можно отметить много интересного и нового по сравнению со взглядами Буля. Под отрицанием класса а Шрёдер понимает его дополнение до единицы16.
Если классов больше двух, то Шредер оперировал с ними по сформулированным им правилам. Правило 1: если среди сомножителей некоторого произведения находятся такие, из которых один является отрицанием другого, то произведение «исчезает», т. е. равно 0. Например, abc х ab, cd,=0, так как имеется b и b1.
Правило 2: если среди членов некоторой суммы находится хотя бы один, который оказывается отрицанием другого, то вся сумма равна 1:
a+b+c,+a+c+d,= l.
Значительное внимание Шрёдер уделил анализу структуры отрицательных суждений. Он отрицательную частичку прилагает к предикату, т. е. вместо «А не есть В» он берет «А есть не-В». Так, суждение «Ни один лев не является травоядным», если следовать идеям Шредера, надо заменить на суждение «Все львы являются нетравоядными».
Шрёдер класс а, как отрицание класса а считает очень неопределенным. И в доказательство этой мысли приводит такой пример. Понятие «несражающийся» (в армии) охватывает: саперов, полковых ремесленников, служащих лазарета, врачей, которые относятся к армии, но не сражаются.
Опираясь на законы де Моргана, Шредер проводит анализ языка разговорной речи. Выражение в речи означает, что «каждое с есть не-а и (одновременно) не-b ».Для него можно выбрать другое выражение: «Каждое с не есть ни а, ни b». Это конъюнктивное суждение, примером которого может быть: «Каждая рыба — не птица и не млекопитающее». Другое суждение «Никакая рыба не есть птица и млекопитающее» означает в символическом виде , что эквивалентно, на основании правила де Моргана, Так называемое отрицательное по связке суждение «ни а, ни b не есть с» представляется в виде
Шредер формулирует правила, или требования, научной квалификации: 1) между родом и суммой его видов должно быть тождество; 2) все виды должны быть дизъюнктивными, т. е. должны исключать друг друга, и попарно в произведении давать 0; 3) для расчленения рода на виды должно быть одно основание. Используя отрицание, Шрёдер показал, как классифицируемый род делится на виды и подвиды.
В логическом исчислении, доведенном до наибольшей простоты, Шрёдер признает три основных действия: сложение (трактуя его как нестрогую дизъюнкцию), умножение и отрицание. Однако вычитание он считает не безусловно выполнимой операцией.
По нашему мнению, в логике классов вполне приемлема операция вычитания классов, но мы понимаем ее принципиально иначе, чем Буль и Шрёдер. Буль и Шрёдер считали, что в разности (а—b) b должно полностью входить в а, если же b>а или а и b несовместимы, то операция вычитания невыполнима. В отличие от Буля и Шрёдера мы допускаем возможной (т. е. выполнимой) разность всяких двух классов а и b, из которых b может и не быть частью а; в качестве следствий мы учитываем случаи вычитания, когда классы а и b являются пустыми или универсальными. Данный подход рассмотрен выше на с. 57—59.
Наиболее известны работы английского логика Стенли Джевонса (1835—1882) «Principles of Science, a Treatise on Logic and Scientific Method» (London, 1874) и «Elementary Lessons in Logic, Deductive and Inductive» (London, 1870).
В качестве логических операций он признавал конъюнкцию, нестрогую дизъюнкцию и отрицание и не признавал обратных логических операций — вычитания и деления. Джевонс обозначает классы буквами А, В, С... а их дополнение до универсального класса, обозначаемого 1, или их отрицания — соответственно курсивными буквами а, b, с... Нулевой (пустой) класс он обозначает 0, а связку в суждении заменяет знаком равенства.