Похідні та диференціали вищих порядків

Нехай функція Похідні та диференціали вищих порядків - student2.ru диференційовна на проміжку X, а Похідні та диференціали вищих порядків - student2.ru - її похідна, яка також є функцією відносно x. Від цієї функції знову можна шукати похідну за умови, що вона існує на заданому проміжку. Похідна від похідної Похідні та диференціали вищих порядків - student2.ru називається похідною другого порядку (second-order derivative) функції Похідні та диференціали вищих порядків - student2.ru і позначається одним із символів: Похідні та диференціали вищих порядків - student2.ru

Так у фізиці, якщо Похідні та диференціали вищих порядків - student2.ru - закон, за яким змінюється пройдений шлях при прямолінійному русі точки, то Похідні та диференціали вищих порядків - student2.ru є прискоренням (acceleration) цієї точки в момент часу t. Аналогічно Похідні та диференціали вищих порядків - student2.ru і т. д.

Взагалі похідною n-го порядку від функції Похідні та диференціали вищих порядків - student2.ru називається похідна від похідної Похідні та диференціали вищих порядків - student2.ru -го порядку і позначається Похідні та диференціали вищих порядків - student2.ru , або Похідні та диференціали вищих порядків - student2.ru , або Похідні та диференціали вищих порядків - student2.ru

Зауваження. При Похідні та диференціали вищих порядків - student2.ru , похідну n-го порядку позначають відповідно Похідні та диференціали вищих порядків - student2.ru ; при Похідні та диференціали вищих порядків - student2.ru позначають: Похідні та диференціали вищих порядків - student2.ru або Похідні та диференціали вищих порядків - student2.ru .

Формула Лейбніца. Якщо функції Похідні та диференціали вищих порядків - student2.ru , Похідні та диференціали вищих порядків - student2.ru мають похідні до n-го порядку включно, то для обчислення похідної n-го порядку від добутку цих функцій використовують формулу Лейбніца:

Похідні та диференціали вищих порядків - student2.ru .

Диференціалом другого порядку (second differential)функції Похідні та диференціали вищих порядків - student2.ru в точці x називається диференціал від її диференціала першого порядку (за умови, що повторний приріст незалежної змінної x збігається з попереднім Похідні та диференціали вищих порядків - student2.ru ) і позначається Похідні та диференціали вищих порядків - student2.ru ; Похідні та диференціали вищих порядків - student2.ru

За означенням маємо Похідні та диференціали вищих порядків - student2.ru

позначають Похідні та диференціали вищих порядків - student2.ru . Таким чином Похідні та диференціали вищих порядків - student2.ru .

Аналогічно, диференціалом n-го порядку (позначається Похідні та диференціали вищих порядків - student2.ru ), n=2,3,... називається диференціал від диференціала порядку Похідні та диференціали вищих порядків - student2.ru за умови, що в диференціалах весь час беруться одні й ті самі прирости Похідні та диференціали вищих порядків - student2.ru незалежної змінної x. Тобто Похідні та диференціали вищих порядків - student2.ru . При цьому справедлива формула: Похідні та диференціали вищих порядків - student2.ru

15 Теорема Ферма.
Если функция у = f (х), определенная в интервале (а ; b), достигает в некоторой точке с этого интервала наибольшего (или наименьшего) значения и существует производная f ′(с), то f ′(с) = 0. Геометрический смысл этой теоремы состоит в том, что касательная к графику функции у = f (х) в точке с абсциссой с параллельна оси абсцисс

Похідні та диференціали вищих порядків - student2.ru


Теорема Ролля. Если функция у = f (х), непрерывная на отрезке [а ; b] и дифференцируемая в интервале (а ; b), принимает на концах этого отрезка равные значения f (a) = f (b), то в интервале (а ; b) существует такая точка с, что f ′(с) = 0.
Геометрически эта теорема означает следующее: если крайние ординаты кривой у = f (х) равны, то на кривой найдется точка, в которой касательная параллельна оси абсцисс (рис.).

Похідні та диференціали вищих порядків - student2.ru

Теорема Лагранжа. Если функция у = f (х) непрерывна на отрезке [а ; b] и дифференцируема в интервале (а ; b), то в этом интервале найдется такая точка с, что Похідні та диференціали вищих порядків - student2.ru Эта теорема имеет простой геометрический смысл (рис.): на графике функции у = f (х) между точками А и В найдется такая внутренняя точка С, что касательная к графику в точке С параллельна хорде АВ. Похідні та диференціали вищих порядків - student2.ru

Следствие. Если f ′(x) = 0 в интервале (а ; b), то в этом интервале функция f (х) постоянна.

Теорема Коши. Если функции f (х) и g (х): 1) непрерывны на отрезке [а ; b];

2) дифференцируемы в интервале (а ; b);

3) g'(x) ≠ 0 в этом интервале,

то в интервале (а ; b) существует такая точка с, что имеет место равенство

Похідні та диференціали вищих порядків - student2.ru

16формула Тейлора

Похідні та диференціали вищих порядків - student2.ru

изображающая функцию f (x), имеющую n-ю производную f (n)(a) в точке х = а, в виде суммы многочлена степени n, расположенного по степеням х—а, и остаточного члена Rn (x), являющегося в окрестности точки а бесконечно малой более высокого порядка, чем (x—a) n [то есть Rn (x) = an (x)(x—a) n, где an (x) → 0 при х → а]. Если в интервале между а и х существует (n + 1)-я производная, то Rn (x)можно представить в видах:

Похідні та диференціали вищих порядків - student2.ru

,

где ξ и ξ1 — какие-то точки указанного интервала (остаточный член Т. ф. в формах Лагранжа и соответственно Коши). График многочлена, входящего в Т. ф.. имеет в точке а Соприкосновение не ниже n-го порядка с графиком функции f (x). Т. ф. применяют для исследования функций и для приближённых вычислений.

Формулой Маклоренаназывается формула Тейлора при а = 0:

Похідні та диференціали вищих порядків - student2.ru

Похідні та диференціали вищих порядків - student2.ru

Правило Бернулі-Лопіталя

Правило говорить, що якщо функції Похідні та диференціали вищих порядків - student2.ru і Похідні та диференціали вищих порядків - student2.ru задовольняють такі умови:

  1. Похідні та диференціали вищих порядків - student2.ru або Похідні та диференціали вищих порядків - student2.ru ;
  2. Похідні та диференціали вищих порядків - student2.ru ;
  3. Похідні та диференціали вищих порядків - student2.ru в проколотому околі Похідні та диференціали вищих порядків - student2.ru ;
  4. Якщо Похідні та диференціали вищих порядків - student2.ru і Похідні та диференціали вищих порядків - student2.ru — диференційовані в проколотому околі Похідні та диференціали вищих порядків - student2.ru ,

то існує Похідні та диференціали вищих порядків - student2.ru . При цьому теорема вірна і для інших баз

Наши рекомендации