Если в высшей математике Вы имеете дело с дробными числами, то все вычисления старайтесь проводить в обыкновенных правильных и неправильных дробях
Именно , а не или !
Запятую можно использовать лишь иногда, в частности, если – это окончательный ответ какой-нибудь задачи, и с этим числом больше не нужно выполнять никаких действий.
Многие читатели наверняка подумали «да зачем такое подробное объяснение, как для класса коррекции, и так всё понятно». Ничего подобного, вроде бы такой простой школьный пример, а сколько ОЧЕНЬ важных выводов! Вот еще один:
Любое задание следует стремиться выполнить самым рациональным способом.Хотя бы потому, что это экономит время и нервы, а также снижает вероятность допустить ошибку.
Если в задаче по высшей математике Вам встретилась система двух линейных уравнений с двумя неизвестными, то всегда можно использовать метод подстановки (если не указано, что систему нужно решить другим методом) Ни один преподаватель не подумает, что ты лох снизит оценку за использование «школьного метода».
Более того, в ряде случаев метод подстановки целесообразно использовать и при большем количестве переменных.
Пример 2
Решить систему линейных уравнений с тремя неизвестными
Похожая система уравнений часто возникает при использовании так называемого метода неопределенных коэффициентов, когда мы находим интеграл от дробно-рациональной функции. Рассматриваемая система взята мной как раз оттуда.
При нахождении интеграла – цель быстро найти значения коэффициентов , а не изощряться формулами Крамера, методом обратной матрицы и т.д. Поэтому, в данном случае уместен именно метод подстановки.
Когда дана любая система уравнений, в первую очередь желательно выяснить, а нельзя ли ее как-нибудь СРАЗУ упростить? Анализируя уравнения системы, замечаем, что второе уравнение системы можно разделить на 2, что мы и делаем:
Справка: математический знак обозначает «из этого следует это», он часто используется в ходе решения задач.
Теперь анализируем уравнения, нам нужно выразить какую-нибудь переменную через остальные. Какое уравнение выбрать? Наверное, Вы уже догадались, что проще всего для этой цели взять первое уравнение системы:
Здесь без разницы, какую переменную выражать, можно было с таким же успехом выразить или .
Далее, выражение для подставляем во второе и третье уравнения системы:
Раскрываем скобки и приводим подобные слагаемые:
Третье уравнение делим на 2:
Из второго уравнения выразим и подставим в третьей уравнение:
Практически всё готово, из третьего уравнения находим:
Из второго уравнения:
Из первого уравнения:
Ответ:
Проверка: Подставим найденные значения переменных в левую часть каждого уравнения системы:
1)
2)
3)
Получены соответствующие правые части уравнений, таким образом, решение найдено верно.
Пример 3
Решить систему линейных уравнений с 4 неизвестными
Это пример для самостоятельного решения (ответ в конце урока).