Понятие функционального ряда и степенного ряда
Обычный числовой ряд, вспоминаем, состоит из чисел:
Все члены ряда – это ЧИСЛА.
Функциональный же ряд состоит из ФУНКЦИЙ:
В общий член ряда помимо многочленов, факториалов и других подарков непременновходит буковка «икс». Выглядит это, например, так:
. Как и числовой ряд, любой функциональный ряд можно расписать в развернутом виде:
Как видите, все члены функционального ряда – это функции.
Наиболее популярной разновидностью функционального ряда является степенной ряд.
Определение:
Степенной ряд – это ряд, в общий член которого входят целые положительные степени независимой переменной
. Упрощенно степенной ряд во многих учебниках записывают так:
, где
– это старая знакомая «начинка» числовых рядов (многочлены, степени, факториалы, зависящие только от «эн»). Простейший пример:
Посмотрим на это разложение и еще раз осмыслим определение: члены степенного ряда содержат «иксы» в целых положительных (натуральных) степенях.
Очень часто степенной ряд можно встретить в следующих «модификациях»: или
, где
– константа. Например:
Строго говоря, упрощенные записи степенного ряда ,
или
не совсем корректны. В показателе степени вместо одинокой буквы «эн» может располагаться более сложное выражение, например:
Или такой степенной ряд:
Лишь бы показатели степеней при «иксАх» были натуральными.
Сходимость степенного ряда.
Интервал сходимости, радиус сходимости и область сходимости
Не нужно пугаться такого обилия терминов, они идут «рядом друг с другом» и не представляют особых сложностей для понимания. Лучше выберем какой-нибудь простой подопытный ряд и сразу начнём разбираться.
Прошу любить и жаловать степенной ряд .
Переменная может принимать любое действительное значение от «минус бесконечности» до «плюс бесконечности». Подставим в общий член ряда несколько произвольных значений «икс»:
Если , то
Если , то
Если , то
Если , то
И так далее.
Очевидно, что, подставляя в то или иное значение «икс», мы получаем различные числовые ряды. Некоторые числовые ряды будут сходиться, а некоторые расходиться. И наша задача найти множество значений «икс», при котором степенной ряд
будетсходиться. Такое множество и называется областью сходимости ряда.
Для любого степенного ряда (временно отвлекаемся от конкретного примера) возможны три случая:
1) Степенной ряд сходится абсолютно на некотором интервале . Иными словами, если мы выбираем любое значение «икс» из интервала
и подставляем его в общий член степенного ряда, то у нас получается абсолютно сходящийся числовой ряд. Такой интервал
и называется интервалом сходимости степенного ряда.
Радиус сходимости, если совсем просто, это половина длины интервала сходимости:
Геометрически ситуация выглядит так:
В данном случае, интервал сходимости ряда: , радиус сходимости ряда:
Широко распространен тривиальный случай, когда интервал сходимости симметричен относительно нуля:
>
Здесь интервал сходимости ряда: , радиус сходимости ряда:
А что будет происходить на концах интервала ? В точках
,
степенной рядможет, как сходиться, так и расходится, и для выяснения этого необходимо проводить дополнительное исследование. После такого исследования речь идёт уже об области сходимости ряда:
– Если установлено, что степенной ряд расходится на обоих концах интервала, то область сходимости ряда совпадает с интервалом сходимости:
– Если установлено, что степенной ряд сходится на одном конце интервала и расходится на другом, то область сходимости рядапредставляет собой полуинтервал: или
.
– Если установлено, что степенной ряд сходится на обоих концах интервала, то область сходимости ряда представляет собой отрезок:
Термины очень похожи, область сходимости ряда – это чуть более детализированныйинтервал сходимости ряда.
С двумя оставшимися случаями всё короче и проще:
2) Степенной ряд сходится абсолютно при любом значении . То есть, какое бы значение «икс» мы не подставили в общий член степенного ряда – в любом случае у нас получитсяабсолютно сходящийся числовой ряд. Интервал сходимости и область сходимости в данном случае совпадают:
. Радиус сходимости:
. Рисунок приводить не буду, думаю, нет необходимости.
3) Степенной ряд сходится в единственной точке. Если ряд имеет вид , то он будет сходиться в единственной точке
. В этом случае интервал сходимости и область сходимости ряда тоже совпадают и равны единственному числу – нулю:
. Если ряд имеет вид
, то он будет сходиться в единственной точке
, если ряд имеет вид
, то, понятно, – в точке «минус а». Радиус сходимости ряда во всех случаях, естественно, нулевой:
.
Других вариантов нет. Область сходимости степенного ряда – это всегда либо единственная точка, либо любое «икс», либо интервал (возможно полуинтервал, отрезок). Подчеркиваю, что данная классификация справедлива для степенных рядов. Для произвольного функционального ряда она в общем случае является неверной.