Уравнение теплопроводности. Интеграл Пуассона
Температуру физического тела в произвольной точке с координатами (x, y, z) в момент времени t можно представить в виде функции:
Составим дифференциальное уравнение:
Выражение называется оператором Лапласа.
Тогда составленное нами дифференциальное уравнение принимает вид:
и называется уравнением теплопроводности в пространстве.
В качестве частных случаев рассматривают:
- уравнение теплопроводности в стержне,
- уравнение теплопроводности на плоскости.
В случае рассмотрения уравнения теплопроводности в стержне искомая функция u(x, t) должна удовлетворять записанному выше дифференциальному уравнению, начальному условию и граничным условиям .
В результате решения дифференциального уравнения методом Фурье получим:
Отметим, что распространение тепла в теле называется стационарным, если функция u не зависит от времени t.
Интеграл Пуассона
Интегра́л Пуассо́на позволяет получить решение задачи Дирихле для уравнения Лапласа в шаре.
Пусть для гармонической в шаре функции u(r, φ) поставлено условие равенства на границе функции u0: u(R, φ) = u0(φ), при этом функции принадлежат следующим классам гладкости: , где ∂D — граница шара D, а — его замыкание. Тогда решение такой задачи Дирихле представимо в виде интеграла Пуассона:
где ωn — площадь единичной сферы, а n — размерность пространства.
Вывод формулы в двумерном случае
Известно, что функция
является решением задачи Дирихле для уравнения Лапласа в круге. Преобразуем это выражение с учётом выражений для коэффициентов Фурье:
Последнюю сумму можно вычислить при 0≤r<R:
Таким образом, в преобразованном виде интеграл Пуассона для круга приобретает вид:
Уравнение Эйлера для функционала Лагранжа
Пусть задан функционал
с подынтегральной функцией , обладающей непрерывными первыми частными производными и называемой функцией Лагранжа или лагранжианом, где через f' обозначена первая производная f по x. Если этот функционал достигает экстремума на некоторой функции , то для неё должно выполняться обыкновенное дифференциальное уравнение
которое называется уравнением Эйлера — Лагранжа.
Доказательство
Вывод одномерного уравнения Эйлера — Лагранжа является одним из классических доказательств в математике. Оно основывается на основной лемме вариационного исчисления.
Мы хотим найти такую функцию , которая удовлетворяет граничным условиям , и доставляет экстремум функционалу
Предположим, что имеет непрерывные первые производные. Достаточно и более слабых условий, но доказательство для общего случая более сложно.
Если даёт экстремум функционалу и удовлетворяет граничным условиям, то любое слабое возмущение , которое сохраняет граничные условия, должно увеличивать значение (если минимизирует его) или уменьшать (если максимизирует).
Пусть — любая дифференцируемая функция, удовлетворяющая условию . Определим
Поскольку даёт экстремум для , то , то есть
Интегрируя по частям второе слагаемое, находим, что
Используя граничные условия на , получим
Отсюда, так как — любая, следует уравнение Эйлера — Лагранжа: