Решение нелинейных уравнений
Метод хорд
Первые три итерации метода хорд. Синим нарисована функция f(x), красными проводятся хорды.
Метод хорд — итерационный численный метод приближённого нахождения корня алгебраического уравнения.
Содержание [убрать]
|
Геометрическое описание
Будем искать корень функции f(x). Выберем две начальные точки ( ; ) и ( ; ) и проведем через них прямую. Она пересечет ось абсцисс в точке ( ;0). Теперь найдем значение функции с абсциссой . Временно будем считать корнем на отрезке [ ; ]. Пусть точка имеет абсцисcу и лежит на графике. Теперь вместо точек и мы возьмём точку и точку . Теперь с этими двумя точками проделаем ту же операцию и так далее, то есть будем получать две точки и и повторять операцию с ними. Отрезок, соединяющий последние 2 точки, пересекает ось абсцисс в точке, значение абсциссы которой можно приближённо считать корнем. Эти действия нужно повторять до тех пор, пока не получим значение корня с нужным приближением.
Алгебраическое описание метода
Пусть − абсциссы концов хорды, − уравнение прямой, содержащей хорду. Найдем коэффициенты и из системы уравнений:
.
Вычтем из первого уравнения второе:
, затем найдем коэффициенты и :
, тогда
.
Уравнение принимает вид:
Таким образом, теперь можем найти первое приближение к корню, полученное методом хорд:
Теперь возьмем координаты и и повторим все проделанные операции, найдя новое приближение к корню. Повторять операцию следует до тех пор, пока не станет меньше или равно заданному значению погрешности.
Пример использования
Решим уравнение методом хорд. Зададимся точностью ε=0.001 и возьмём в качестве начальных приближений и концы отрезка, на котором отделён корень: и . Вычисления ведутся до тех пор, пока не выполнится неравенство .
Итерационная формула метода хорд имеет вид .
По этой формуле последовательно получаем (подчёркнуты верные значащие цифры):
Первый случай
;
;
;
;
;
;
;
;
;
;
Проверим, что метод работает и в том случае, если и выбраны по одну и ту же сторону от корня (то есть, если корень не отделён на отрезке между начальными приближениями). Возьмём для того же уравнения и . Тогда:
Второй случай
;
;
;
;
;
;
;
;
Мы получили то же значение корня, причём за то же число итераций.
Критерий сходимости
Если дважды непрерывно дифференцируемая функция и знак сохраняется на рассматриваемом промежутке, то полученные приближения будут сходиться к корню монотонно. Если корень уравнения находится на отрезке , производные и на этом промежутке непрерывны и сохраняют постоянные знаки и , то можно доказать[1], что погрешность приближенного решения стремится к нулю при n→∞, то есть метод сходится и сходится со скоростью геометрической прогрессии (при этом говорят, что он имеет линейную скорость сходимости[источник не указан 279 дней]).
Решение нелинейных уравнений
Метод половинного деления ~ Метод хорд
Нелинейные уравнения можно разделить на 2 класса - алгебраические и трансцендентные. Алгебраическими уравнениями называют уравнения, содержащие только алгебраические функции (целые, рациональные, иррациональные). В частности, многочлен является целой алгебраической функцией. Уравнения, содержащие другие функции (тригонометрические, показательные, логарифмические и другие) называются трансцендентными.
Методы решения нелинейных уравнений делятся на две группы:
- точные методы;
- итерационные методы.
Точные методы позволяют записать корни в виде некоторого конечного соотношения (формулы). Из школьного курса алгебры известны такие методы для решения тригонометрических, логарифмических, показательных, а также простейших алгебраических уравнений.
Как известно, многие уравнения и системы уравнений не имеют аналитических решений. В первую очередь это относится к большинству трансцендентных уравнений. Доказано также, что нельзя построить формулу, по которой можно было бы решить произвольное алгебраическое уравнение степени выше четвертой. Кроме того, в некоторых случаях уравнение содержит коэффициенты, известные лишь приблизительно, и, следовательно, сама задача о точном определении корней уравнения теряет смысл. Для их решения используются итерационные методы с заданной степенью точности.
Пусть дано уравнение
(1) |
где:
- Функция f(x) непрерывна на отрезке [a, b] вместе со своими производными 1-го и 2-го порядка.
- Значения f(x) на концах отрезка имеют разные знаки (f(a) * f(b) < 0).
- Первая и вторая производные f' (x) и f'' (x) сохраняют определенный знак на всем отрезке.
Условия 1) и 2) гарантируют, что на интервале [a, b] находится хотя бы один корень, а из 3) следует, что f(x) на данном интервале монотонна и поэтому корень будет единственным.
Решить уравнение (1) итерационным методом значит установить, имеет ли оно корни, сколько корней и найти значения корней с нужной точностью.
Всякое значение , обращающее функцию f(x) в нуль, т.е. такое, что:
называется корнем уравнения (1) или нулем функции f(x).
Задача нахождения корня уравнения f(x) = 0 итерационным методом состоит из двух этапов:
- отделение корней - отыскание приближенного значения корня или содержащего его отрезка;
- уточнение приближенных корней - доведение их до заданной степени точности.
Процесс отделения корней начинается с установления знаков функции f(x) в граничных x = a и x = b точках области ее существования.
Пример 1. Отделить корни уравнения:
f(x)º x3 - 6х + 2 = 0. | (2) |
Составим приблизительную схему:
х | - ¥ | - 3 | - 1 | + ¥ | |||
f(x) | - | - | + | + | - | + | + |
Следовательно, уравнение (2) имеет три действительных корня, лежащих в интервалах [-3, -1], [0, 1] и [1, 3].
Приближенные значения корней (начальные приближения) могут быть также известны из физического смысла задачи, из решения аналогичной задачи при других исходных данных, или могут быть найдены графическим способом.
В инженерной практике распространен графический способ определения приближенных корней.
Принимая во внимание, что действительные корни уравнения (1) - это точки пересечения графика функции f(x) с осью абсцисс, достаточно построить график функции f(x) и отметить точки пересечения f(x)с осью Ох, или отметить на оси Ох отрезки, содержащие по одному корню. Построение графиков часто удается сильно упростить, заменив уравнение (1) равносильным ему уравнением:
, | (3) |
где функции f1(x) и f2(x) - более простые, чем функция f(x). Тогда, построив графики функций у = f1(x) и у = f2(x), искомые корни получим как абсциссы точек пересечения этих графиков.
Рисунок 2.
Пример 2. Графически отделить корни уравнения (Рисунок 2):
x lg x = 1. | (4) |
Уравнение (4) удобно переписать в виде равенства:
lg x= .
Отсюда ясно, что корни уравнения (4) могут быть найдены как абсциссы точек пересечения логарифмической кривой y = lg x и гиперболы y = . Построив эти кривые, приближенно найдем единственный корень уравнения (4) или определим его содержащий отрезок [2, 3].
Итерационный процесс состоит в последовательном уточнении начального приближения х0. Каждый такой шаг называется итерацией. В результате итераций находится последовательность приближенных значений корня х1, х2, ..., хn. Если эти значения с увеличением числа итераций n приближаются к истинному значению корня, то говорят, что итерационный процесс сходится.