Функциональные последовательности
Определение. Если членами ряда являются функции переменой х, то ряд называется функциональным.
Исследование на сходимость функциональных рядов сложнее исследования числовых рядов. Один и тот же функциональный ряд может при одних значениях переменной х сходиться, а при других – расходиться. Поэтому вопрос сходимости функциональных рядов сводится к определению тех значений переменной х, при которых ряд сходится.
Совокупность таких значений называется областью сходимости.
Так как пределом каждой функции, входящей в область сходимости ряда, является некоторое число, то пределом функциональной последовательности будет являться некоторая функция:
Определение. Говорят, что функциональная последовательность сходится к функции на отрезке , если для любого числа и любой точки х из рассматриваемого отрезка существует номер , такой, что неравенство
выполняется при .
При выбранном значении каждой точке отрезка соответствует свой номер и, следовательно, номеров, соответствующих всем точкам отрезка , будет бесчисленное множество. Если выбрать из всех этих номеров наибольший, то этот номер будет годиться для всех точек отрезка , т.е. будет общим для всех точек.
Определение. Говорят, что функциональная последовательность равномерно сходится к функции на отрезке , если для любого числа существует номер , такой, что неравенство
выполняется при для всех точек отрезка .
Пример. Рассмотрим последовательность
Данная последовательность сходится на всей числовой оси к функции , т.к.
.
Построим графики этой последовательности:
При увеличении числа n график последовательности приближается к оси х.
Функциональные ряды
Определение. Частичными суммами функционального ряда называются функции
Определение. Функциональный ряд называется сходящимся в точке , если в этой точке сходится последовательность его частных сумм. Предел последовательности называется суммой ряда в точке .
Определение. Совокупность всех значений х, для которых сходится ряд называется областью сходимостиряда.
Определение. Ряд называется равномерно сходящимся на отрезке , если равномерно сходится на этом отрезке последовательность частных сумм этого ряда.
Теорема. (Критерий Коши равномерной сходимости ряда). Для равномерной сходимости ряда необходимо и достаточно, чтобы для любого числа существовал такой номер , что при и любом целом неравенство
выполнялось бы для всех х на отрезке .
Теорема. (Признак равномерной сходимости Вейерштрасса) Ряд сходится равномерно и абсолютно на отрезке , если модули его членов на этом же отрезке не превосходят соответствующих членов сходящегося числового ряда с положительными членами:
т.е. имеет место неравенство:
.
При этом говорят, что в этом случае функциональный ряд мажорируетсячисловым рядом .
Пример. Исследовать на сходимость ряд .
Так как всегда, то очевидно, что .
При этом известно, что обобщённый гармонический ряд при сходится, то в соответствии с признаком Вейерштрасса исследуемый ряд равномерно сходится и притом в любом интервале.
Пример. Исследовать на сходимость ряд .
На отрезке выполняется неравенство т.е. по признаку Вейерштрасса на этом отрезке исследуемый ряд сходится, а на интервалах , расходится.