Теорема (достаточный признак монотонности)
1). Если на отрезке , то монотонно возрастает на .
2). Если на отрезке , то монотонно убывает на .
Доказательство:
Возьмем любые числа и , причем < , из интервала . По формуле Лагранжа получаем: , , и поэтому принадлежит интервалу . Так как , то в первом случае , то есть , а во втором , то есть , что и требовалось доказать.
БИЛЕТ 35. Экстремумы функции. Достаточные условия экстремума.
Теорема 1. Необходимое условие экстремума.
Пусть точка х0 является точка экстремума для функции f(x). Тогда, если существует f’(x0), то f’(x0)=0, либо f’(x0) не существует.
В точке х1 – min; в точке х2 – max.
Теорема 2. Достаточное условие строгого extr в терминах первой производной.
Пусть f(x) дифференцируема в некой окрестности точки х0, и в точке х0 f(x) непрерывна. Если f’(x) при переходе через точку х0 меняет знак, то точка х0 является точкой строгого экстремума, при этом 1)если при , а при
то в точке х0 – минимум. 2)если при , а при то в точке х0 максимум.
Доказательство.
Докажем 1) .Теорема Лагранжа . а) Если х-х0>0 и . б) если х-х0<0 и , т.е при переходе через точку х0 не меняет свой знак: >0, т.е точка х0-точка минимума.
2)Доказательство аналогично.
Достаточное условие строгого экстремума в терминах старшей производной.
Пусть в точке х0 у функции f(x) существует n производных, причём Тогда, если n=2k, то в точке х0 экстремум, и если Если n=2k+1 в точке х0 нет экстремума и точка х0 точка возрастания. Если и точка убывания, если .
Следствие. Если в точке х0 у функции f(x) существует , то, если >0, то в точке х0 минимум, <0,то в точке х0 максимум (k=1).
Доказательство.
Разложим функцию f(x) в ряд Тейлора.
или знак определяется первым слагаемым, если n – четное, то знак зависит от знака . По этому, если то >0 – минимум. то <0 – максимум. Если n – нечетное, то знак зависит от и , т.е. при переходе через точку х0 знак меняется, следовательно в точке х0 экстремума нет.
Следствие.
. f’’(x0)>0, >0 – минимум; f’’(x0)<0, <0 – максимум.
БИЛЕТ 36. Направление выпуклости графика функции. Точки перегиба. Необходимое условие перегиба.
Выпуклости функции. Точка перегиба.
Опр. Функция f(x) на интервале (a,b) называется выпуклой вверх (выпуклой вниз), если
( )
Геометрически это означает что кривая y=f(x) лежит выше(ниже) прямой.
Достаточное условие строго выпуклости.
Теорема. Если на интервале (a,b) f’’(x)>0, то f(x) выпукло вниз, если f’’(x)<0, то f(x) выпукло вверх.
Доказательство
Рассмотрим разность х2-х1>0
а)Если выпукла вниз.
б) Если выпукла вверх.
Опр. Точка х0 для функции f(x) называется точкой перегиба, если она является концом интервала выпуклота вверх(вниз) и началом интервала выпуклота вниз(вверх)