Исследование формы поверхностей второго порядка по их каноническим уравнениям
1. Эллипсоид.
Из уравнения (3) вытекает, что координатные плоскости являются плоскостями симметрии эллипсоида, а начало координат—центром симметрии. Числа а, b, с называются полуосями эллипсоида и представляют собой длины отрезков, от начала координат до точек пересечения эллипсоида с осями координат. Чтобы более наглядно представить себе форму эллипсоида, выясним форму линий пересечения его плоскостями, параллельными какой-либо из координатных плоскостей.
Ради определенности рассмотрим линии Lh пересечения эллипсоида с плоскостями
z = h (20)
параллельными плоскости Оху. Уравнение проекции L*h линии Lh на плоскость Оху получается из уравнения (3), если положить в нем z = h. Таким образом, уравнение этой проекции имеет вид
Если положить
то уравнение (21) можно записать в виде
т. е. L*h представляет собой эллипс с полуосями а* и b*, которые могут быть вычислены по формулам (22). Так как Lh получается «подъемом» L*h на высоту h по оси Оz (см. (20)), то и Lh представляет собой эллипс.
Представление об эллипсоиде можно получить следующим образом. Рассмотрим на плоскости Оху семейство эллипсов (23) (рис. 1), полуоси а* и b* которых зависят от h (см. (22)), и каждый такой эллипс снабдим отметкой h, указывающей, на какую высоту по оси Оz должен быть «поднят» этот эллипс. Мыполучим своего рода «карту» эллипсоида. Используя эту «карту», легко представить себе пространственный вид эллипсоида.
(Метод представления формы фигуры путем получения «карты» фигуры я привожу только для эллипсоида, представить форму других фигур этим методом можно аналогично)
Эллипсоид
.
Гиперболоиды.
Ä 1°. Однополостный гиперболоид. Обратимся к каноническому
уравнению (4) однополостного гиперболоида
Из уравнения (4) вытекает, что координатные плоскости являются плоскостями симметрии, а начало координат — центром симметрии однополостного гиперболоида.
Ä 2°. Двуполостный гиперболоид.
Из канонического уравнения (5) двуполостного гиперболоида вытекает, что координатные плоскости являются его плоскостями симметрии, а начало координат — его центром симметрии.
Параболоиды.
1°. Эллиптический параболоид. Обращаясь к каноническому уравнению (14) эллиптического параболоида
мы видим, что для него Oxz и Оуz являются плоскостями симметрии. Ось Oz, представляющая линию пересечения этих плоскостей, называется осью эллиптического параболоида.
2°. Гиперболический параболоид. Из канонического уравнения (15)
гиперболического параболоида вытекает, что плоскости Oxz и Оуz являются плоскостями симметрии. Ось Oz называется осью гиперболического пaраболоида.
Прим.: получение «карты высот» для гиперболического пaраболоида несколько отличается от аналогичной процедуры для вышеприведенных поверхностей 2-го порядка, поэтому я также включил его в свой реферат.
Линии z=h пересечения гиперболического параболоида плоскостями z=h представляют собой при h>0 гиперболы
с полуосями
а при h < 0 —сопряженные гиперболы для гипербол (24)
с полуосями
Используя формулы (24)—(27), легко построить «карту» гиперболического параболоида. Отметим еще, плоскость z=0 пересекает гиперболический параболоид по двум прямым :
Из формул (25) и (27) вытекает, что прямые (28) являются асимптотами гипербол (24) и (26).
Карта гиперболического параболоида дает представление о его пространственной форме. Как и в случае эллиптического параболоида, можно убедиться в том, что гиперболический параболоид может быть получен путем параллельного перемещения параболы, представляющей собой сечение плоскостью Oxz (Оуz), когда ее вершина движется вдоль параболы, являющейся сечением параболоида плоскостью Oyz (Oxz).
Гиперболический параболоид.