Локальная формула Тейлора с остаточным членом в форме Пеано
Ответ:
Теорема(формула Тейлора с остаточным членом в форме Пеано) Пусть -- остаток в формуле Тейлора для функции в точке , и функция имеет непрерывную -ю производную. Тогда -- бесконечно малая величина того же или большего порядка малости, как , при . (Остаточный член , о котором известны эти сведения о порядке малости, называется остаточным членом в форме Пеано.)
Доказательство. Утверждение теоремы означает, что существует
При остаток будет иметь тот же порядок малости, что , а при -- больший порядок малости. Итак, вычислим предел:
Применим к этому пределу правило Лопиталя, повторив этот приём раз:
Последний предел мы вычислили прямой подстановкой, поскольку по предположению -- непрерывная функция. Существование предела доказывает утверждение теоремы.
27. Исследование функций с помощью первой и второй производной. Необходимое и достаточное условие экстремума функций:
Ответ:
Исследование функций с помощью производной.
Возрастание и убывание функций.
Теорема. 1) Если функция f(x) имеет производную на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. f¢(x) ³ 0.
2) Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на промежутке (а, b), причем f¢(x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b].
Доказательство.
1) Если функция f(x) возрастает, то f(x + Dx) > f(x) при Dx>0 и f(x + Dx) < f(x) при Dх<0,
тогда:
2) Пусть f¢(x)>0 для любых точек х1 и х2, принадлежащих отрезку [a, b], причем x1<x2.
Тогда по теореме Лагранжа: f(x2) – f(x1) = f¢(e)(x2 – x1), x1 < e < x2
По условию f¢(e)>0, следовательно, f(x2) – f(x1) >0, т.е. функция f(x) возрастает.
Теорема доказана.
Аналогично можно сделать вывод о том, что если функция f(x) убывает на отрезке [a, b], то f¢(x)£0 на этом отрезке. Если f¢(x)<0 в промежутке (a, b), то f(x) убывает на отрезке [a, b].
Конечно, данное утверждение справедливо, если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (a, b).
Определение. Функция f(x) имеет в точке х1 максимум, если ее значение в этой точке больше значений во всех точках некоторого интервала, содержащего точку х1. Функция f(x) имеет в точке х2 минимум, если f(x2 +Dx) > f(x2) при любом Dх (Dх может быть и отрицательным).
Очевидно, что функция, определенная на отрезке может иметь максимум и минимум только в точках, находящихся внутри этого отрезка. Нельзя также путать максимум и минимум функции с ее наибольшим и наименьшим значением на отрезке – это понятия принципиально различные.
Определение. Точки максимума и минимума функции называются точками экстремума.
Теорема. (необходимое условие существования экстремума) Если функция f(x) дифференцируема в точке х = х1 и точка х1 является точкой экстремума, то производная функции обращается в нуль в этой точке.
Доказательство. Предположим, что функция f(x) имеет в точке х = х1 максимум.
Тогда при достаточно малых положительных Dх>0 верно неравенство:
, т.е.
Тогда
По определению:
Т.е. если Dх®0, но Dх<0, то f¢(x1) ³ 0, а если Dх®0, но Dх>0, то f¢(x1) £ 0.
А возможно это только в том случае, если при Dх®0 f¢(x1) = 0.
Для случая, если функция f(x) имеет в точке х2 минимум теорема доказывается аналогично.
Теорема доказана.
Следствие. Обратное утверждение неверно. Если производная функции в некоторой точке равна нулю, то это еще не значит, что в этой точке функция имеет экстремум. Красноречивый пример этого – функция у = х3, производная которой в точке х = 0 равна нулю, однако в этой точке функция имеет только перегиб, а не максимум или минимум.
Определение. Критическими точками функции называются точки, в которых производная функции не существует или равна нулю.
Теорема. (Достаточные условия существования экстремума)
Пусть функция f(x) непрерывна в интервале (a, b), который содержит критическую точку х1, и дифференцируема во всех точках этого интервала (кроме, может быть, самой точки х1).
Если при переходе через точку х1 слева направо производная функции f¢(x) меняет знак с “+” на “-“, то в точке х = х1 функция f(x) имеет максимум, а если производная меняет знак с “-“ на “+”- то функция имеет минимум.
Доказательство.
Пусть
По теореме Лагранжа: f(x) – f(x1) = f¢(e)(x – x1), где x < e < x1.
Тогда: 1) Если х < x1, то e < x1; f¢(e)>0; f¢(e)(x – x1)<0, следовательно
f(x) – f(x1)<0 или f(x) < f(x1).
2) Если х > x1, то e > x1 f¢(e)<0; f¢(e)(x – x1)<0, следовательно
f(x) – f(x1)<0 или f(x) < f(x1).
Т. к. ответы совпадают, то можно сказать, что f(x) < f(x1) в любых точках вблизи х1, т.е. х1 – точка максимума.
Доказательство теоремы для точки минимума производится аналогично.
Теорема доказана.
На основе вышесказанного можно выработать единый порядок действий при нахождении наибольшего и наименьшего значения функции на отрезке:
1) Найти критические точки функции.
2) Найти значения функции в критических точках.
3) Найти значения функции на концах отрезка.
4) Выбрать среди полученных значений наибольшее и наименьшее.
Пусть в точке х = х1 f¢(x1) = 0 и f¢¢(x1) существует и непрерывна в некоторой окрестности точки х1.
Теорема. Если f¢(x1) = 0, то функция f(x) в точке х = х1 имеет максимум, если f¢¢(x1)<0 и минимум, если f¢¢(x1)>0.
Доказательство.
Пусть f¢(x1) = 0 и f¢¢(x1)<0. Т.к. функция f(x) непрерывна, то f¢¢(x1) будет отрицательной и в некоторой малой окрестности точки х1.
Т.к. f¢¢(x) = (f¢(x))¢ < 0, то f¢(x) убывает на отрезке, содержащем точку х1, но f¢(x1)=0, т.е. f¢(x) > 0 при х<x1 и f¢(x) < 0 при x>x1. Это и означает, что при переходе через точку х = х1 производная f¢(x) меняет знак с “+” на “-“, т.е. в этой точке функция f(x) имеет максимум.
Для случая минимума функции теорема доказывается аналогично.
Если f¢¢(x) = 0, то характер критической точки неизвестен. Для его определения требуется дальнейшее исследование.