Геометрический смысл производной. Уравнения касательной и нормали
Определение производной. Ее физический смысл. Определение дифференцируемой функции. Сформулировать теорему о связи между дифференцируемостью и непрерывностью функции.
Производная— основное понятие дифференциального исчесления, характеризующее скорость изменения функции.
Производная - это предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если таковой предел существует.
Функцию, имеющую конечную производную, называют дифференцируемой.
Процесс вычисления производной называется дифференцированием
Если положение точки при её движении по числовой прямой задаётся функцией S= f(t), где t– время движения, то производная функции S– мгновенная скорость движения в момент времени t. По аналогии с этой моделью вообще говорят о том, что производная функции у= f(x) – скорость изменения функции в точке х.
Теорема (необходимое условие дифференцируемости функции).Если функция дифференцируема в точке, то она непрерывна в этой точке.
Доказательство. Пусть функция у=f(x) дифференцируема в точке х0. Дадим в этой точке аргументу приращение Dх. Функция получит приращение Dу. Найдем .
.
Следовательно, у=f(x) непрерывна в точке х0.
Следствие. Если х0 – точка разрыва функции, то в ней функция не дифференцируема.
Утверждение, обратное теореме, не верно. Из непрерывности не следует дифференцируемость.
Пример. у=|х| , х0=0.
Dх>0, ;
Dх<0, .
В точке х0=0функция непрерывна, но производной не существует.
Геометрический смысл производной. Уравнения касательной и нормали
Геометрический смысл производной. Рассмотрим график функции y = f ( x ):
Из рис.1 видно, что для любых двух точек A и B графика функции:
где - угол наклона секущей AB.
Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точкуB, то неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A. Отсюда следует: производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.
Уравнение касательной. Выведем уравнение касательной к графику функции в точке A ( x0 , f ( x0) ). В общем случае уравнение прямой с угловым коэффициентом f ’( x0) имеет вид:
y = f ’( x0) · x + b .
Чтобы найти b,воспользуемся тем, что касательная проходит через точку A:
f ( x0) = f ’( x0) · x0 + b ,
отсюда, b = f ( x0) – f ’( x0) · x0, и подставляя это выражение вместо b, мы получим уравнение касательной:
y = f ( x0) + f ’( x0) · ( x – x0) .
Нормалью к графику функции y = f (x) в точке A (x0; y0) называется прямая, проходящая через точку A и перпендикулярная касательной к этой точке. Она задается уравнением
что следует из свойства угловых коэффициентов перпендикулярных друг другу прямых.
В случае бесконечной производной касательная в точке x0 становится вертикальной и задается уравнением x = x0, а нормаль – горизонтальной: y = y0.