Указания к выполнению контрольных заданий 1 страница

Вопросы для подготовки к зачету по дисциплине

«Эконометрика»

1. Эконометрика и экономическая теория. Эконометрика и статистика. Эконометрика и экономико-математические методы.

2. Эконометрические модели: общая характеристика. Области применения эконометрических моделей.

  1. Понятие о функциональной, статистической и корреляционной связях. Основные задачи прикладного корреляционно-регрессионного анализа.
  2. Уравнение регрессии, его смысл и назначение. Выбор типа математической функции при построении уравнения регрессии.
  3. Парная регрессия. Метод наименьших квадратов и условия его применения для определения параметров уравнения парной регрессии.
  4. Оценка степени тесноты связи между количественными переменными. Показатели корреляции: линейный коэффициент корреляции, индекс корреляции, теоретическое корреляционное отношение. Коэффициент детерминации.
  5. Стандартная ошибка уравнения регрессии.

8. Оценка статистической значимости показателей корреляции, параметров уравнения регрессии, уравнения регрессии в целом: t - критерий Стьюдента, F - критерий Фишера.

9. Понятие о множественной регрессии. Классическая линейная модель множественной регрессии (КЛММР). Определение параметров уравнения множественной регрессии методом наименьших квадратов.

10. Стандартизованные коэффициенты регрессии, их интерпретация.

11. Парные и частные коэффициенты корреляции.

12. Множественный коэффициент корреляции и множественный коэффициент детерминации. Оценка надежности показателей корреляции.

13. Оценка качества модели множественной регрессии: F – критерий Фишера, t - критерий Стьюдента.

14. Мультиколлинеарность. Методы выявления и устранения мультиколлинеарности.

15. Фиктивные переменные в регрессионных моделях. Модели ANOVA и ANCOVA.

16. Спецификация переменных в уравнениях регрессии. Ошибки спецификации.

17. Проблема выявления гетероскедастичности в регрессионных моделях.

18. Специфика временных рядов как источника данных в эконометрическом моделировании.

19. Аналитическое выравнивание временных рядов. Оценка параметров уравнения тренда.

20. Автокорреляция уровней временного ряда ее измерение и последствия.

21.Автокорреляция в остатках, ее измерение и последствия. Критерий Дарбина- Уотсона.

22.Модели авторегрессии.

Методические указания по выполнению контрольной работы

Контрольная работа по дисциплине “Эконометрика”

Общие указания по выполнению контрольной работы

Задания к контрольной работе составлены в 10 вариантах. Номер варианта соответствует последней цифре шифра зачетной книжки.Если последняя цифра зачетной книжки – 0, следует выполнить 10-й вариант.

Каждый вариант контрольной работы содержит 4 задачи по основным разделам курса. Порядковый номер задачи из каждой темы соответствует номеру варианта.

1. Результаты расчетов всех относительных величин необходимо проводить с точностью до 0,0001, а процентов - до 0,01.

2. Все расчеты могут быть выполнены как вручную, так и с использованием пакетов прикладных программ на персональном компьютере. В последнем случае следует обязательно указывать название и версию использованного программного обеспечения. Соответствующие распечатки необходимо привести в тексте работы или оформить в качестве приложения.

3. Все расчеты должны сопровождаться комментариями и интерпретацией полученных результатов.

Указания к выполнению контрольных работ содержат все необходимые формулы, а также содержат примеры расчетов типовых задач, которые по тексту указаний выделены курсивом.

Указания к выполнению контрольных заданий

Задача 1по теме “Парная регрессия и корреляция”.

Введем следующие обозначения:

Указания к выполнению контрольных заданий 1 страница - student2.ru - факторный признак, независимая (объясняющая) переменная,

Указания к выполнению контрольных заданий 1 страница - student2.ru - результативный признак, зависимая переменная,

x – фактические значения факторного признака,

y – фактические значения результативного признака,

Указания к выполнению контрольных заданий 1 страница - student2.ru - расчетные (полученные по уравнению регрессии) значения результативного признака,

a , b - параметры уравнения регрессии.

В контрольных заданиях используется уравнение парной линейной регрессии вида:

Указания к выполнению контрольных заданий 1 страница - student2.ru

Рассмотрим методику выполнения на условиях конкретной задачи:

American Express Company в течение долгого времени полагала, что владельцы ее кредитных карт предпочитают оплачивать свои расходы во время путешествий при помощи их карт. Для выяснения этого из компьютерной базы компании были случайно выбраны 25 владельцев карточек, которым были заданы вопросы о числе миль, которые они провели в путешествиях. Данные опроса о расходах путешественников и числе миль, проведенных ими в пути, составляют исходную информацию задачи.

N п/п Число миль, проведенных в пути, X Расходы, у.е , Y N п/п Число миль, проведенных в пути, X Расходы, у.е , Y
1 1211 1802 14 3209 4492
2 1345 2405 15 3466 4244
3 1422 2005 16 3643 5298
4 1687 2511 17 3852 4801
5 1847 2332 18 4033 5147
6 2026 2305 19 4267 5738
7 2133 3016 20 4498 6420
8 2253 3385 21 4533 6059
9 2400 3090 22 4804 6426
10 2468 3694 23 5090 6321
11 2699 3371 24 5233 7025
12 2806 3998 25 5439 6964
13 3082 3555

Пункт 1. Построение поля корреляции результата и фактора производится по исходным данным о парах значений факторного и результативного признаков с соблюдением масштаба. На основе поля корреляции делаются выводы о направлении и возможной функциональной форме связи между факторным и результативным признаками (прямая - обратная, линейная - нелинейная).

 
  Указания к выполнению контрольных заданий 1 страница - student2.ru

Для условий рассматриваемой задачи поле корреляции выглядит следующим образом:

Связь между факторным и результативным признаками прямая, линейная.

Пункт 2. Оценка параметров уравнения парной линейной регрессии производится обычным методом наименьших квадратов (МНК): Указания к выполнению контрольных заданий 1 страница - student2.ru , где

a и b –оценки параметров модели.

Величины, минимизирующие суммы квадратов отклонений Указания к выполнению контрольных заданий 1 страница - student2.ru от Указания к выполнению контрольных заданий 1 страница - student2.ru для случая парной линейной регрессии, находятся как:

Указания к выполнению контрольных заданий 1 страница - student2.ru ;

Указания к выполнению контрольных заданий 1 страница - student2.ru .

Значения ошибок, называемые обычно остатками, рассчитываются как Указания к выполнению контрольных заданий 1 страница - student2.ru .

Проведите интерпретацию полученных результатов.

Расчет необходимых данных лучше всего организовать в таблице. Для нашего примера таблица будет выглядеть следующим образом:

Таблица 1

N/N х у Указания к выполнению контрольных заданий 1 страница - student2.ru Указания к выполнению контрольных заданий 1 страница - student2.ru Указания к выполнению контрольных заданий 1 страница - student2.ru Указания к выполнению контрольных заданий 1 страница - student2.ru Указания к выполнению контрольных заданий 1 страница - student2.ru Указания к выполнению контрольных заданий 1 страница - student2.ru
-1966,84 -2454,16 1787,652 14,34756
-1832,84 -1851,16 1955,831 449,1692
-1755,84 -2251,16 2052,471 -47,4707
-1490,84 -1745,16 2385,062 125,9377
-1330,84 -1924,16 2585,872 -253,872
-1151,84 -1951,16 2810,529 -505,529
-1044,84 -1240,16 2944,82 71,17973
-924,84 -871,16 805683,6 3095,428 289,5722
-777,84 -1166,16 907085,9 605035,1 3279,922 -189,922
-709,84 -562,16 399043,7 503872,8 3365,266 328,7337
-478,84 -885,16 229287,7 3655,186 -284,186
-371,84 -258,16 95994,21 3789,477 208,5225
-95,84 -701,16 67199,17 9185,306 4135,875 -580,875
Продолжение таблицы 1
N/N х у Указания к выполнению контрольных заданий 1 страница - student2.ru Указания к выполнению контрольных заданий 1 страница - student2.ru Указания к выполнению контрольных заданий 1 страница - student2.ru Указания к выполнению контрольных заданий 1 страница - student2.ru Указания к выполнению контрольных заданий 1 страница - student2.ru Указания к выполнению контрольных заданий 1 страница - student2.ru
31,16 235,84 7348,774 970,9456 4295,268 196,7322
288,16 -12,16 -3504,03 83036,19 4617,819 -373,819
465,16 1041,84 484622,3 216373,8 4839,965 458,035
674,16 544,84 367309,3 454491,7 5102,273 -301,273
855,16 890,84 761810,7 731298,6 5329,439 -182,439
1089,16 1481,84 5623,124 114,8759
1320,16 2163,84 5913,044 506,9564
1355,16 1802,84 5956,971 102,0292
1626,16 2169,84 6297,093 128,9072
1912,16 2064,84 6656,041 -335,041
2055,16 2768,84 6835,515 189,4853
2261,16 2707,84 7094,058 -130,058
сумма    
Средн. 3177,84 4256,16            

В соответствии с расчетами, представленными в таблице 1, а= 267,7715; b=1,2551

Соответственно уравнение регрессии может быть записано как:

Указания к выполнению контрольных заданий 1 страница - student2.ru

Коэффициент регрессии линейной функции (b) есть абсолютный показатель силы связи, характеризующий среднее абсолютное изменение результата при изменении факторного признака на единицу своего измерения.

Полученное уравнение может быть объяснено следующим образом: с увеличением расстояния на 1 милю расходы путешественника в среднем увеличиваются на 1,2551 условных денежных единиц. Свободный член уравнения равен 267,7715, что может трактоваться как влияние на величину расходов других, неучтенных в модели факторов.

Пункт 3. Линейный коэффициент корреляции характеризует тесноту линейной связи между изучаемыми признаками. Его можно определить по следующей формуле: Указания к выполнению контрольных заданий 1 страница - student2.ru

Указания к выполнению контрольных заданий 1 страница - student2.ru .

Значения линейного коэффициента корреляции принадлежит промежутку [-1;1].

Чем ближе его абсолютное значение к 1, тем теснее связь между признаками. Положительная величина свидетельствует о прямой связи между изучаемыми признаками, отрицательная - о наличии обратной связи между признаками.

Для нашей задачи r=0,98329, что подтверждает вывод, сделанный в пункте 1, что связь между признаками прямая, а также указывает на очень сильную взаимосвязь между количеством миль, проведенных в пути и расходами.

Квадрат коэффициента (индекса) корреляции называется коэффициентом детерминации и показывает долю вариации результативного признака, объясненную вариацией факторного признака.

Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах. Например: Указания к выполнению контрольных заданий 1 страница - student2.ru =0,8 означает, что доля колеблемости результативного признака, объясненная вариацией фактора Указания к выполнению контрольных заданий 1 страница - student2.ru , включенного в уравнение регрессии, равна 80%. Остальные 20% приходятся на долю прочих факторов, не учтенных в уравнении регрессии.

Для нашей задачи коэффициент детерминации равен 0,9669, то есть 96,69% вариации результативного признака (расходов путешественников) объясняется вариацией факторного признака (количеством миль, проведенных в пути)

Пункт 4 связан с темой “Проверка статистических гипотез”. Рекомендуется использовать следующую общую процедуру проверки гипотез:

1.Сформулируйте нулевую гипотезу о том, что коэффициент регрессии статистически незначим: Указания к выполнению контрольных заданий 1 страница - student2.ru (линейной зависимости нет)

при конкурирующей: Указания к выполнению контрольных заданий 1 страница - student2.ru (линейная зависимость есть)

или о том, что уравнение в целом статистически незначимо: Указания к выполнению контрольных заданий 1 страница - student2.ru .

2.Определите фактическое значение соответствующего критерия.

3.Сравните полученное фактическое значение с табличным.

4.Если фактическое значение используемого критерия превышает табличное, нулевая гипотеза отклоняется, и с вероятностью (1- Указания к выполнению контрольных заданий 1 страница - student2.ru ) принимается альтернативная гипотеза о статистической значимости коэффициента регрессии. Если фактическое значение t - критерия меньше табличного, оснований отклонять нулевую гипотезу - нет.

Статистическая значимость коэффициента регрессии Указания к выполнению контрольных заданий 1 страница - student2.ru проверяется с помощью t - критерия Стьюдента:

Указания к выполнению контрольных заданий 1 страница - student2.ru ,

где

Указания к выполнению контрольных заданий 1 страница - student2.ru ,

Указания к выполнению контрольных заданий 1 страница - student2.ru - стандартная ошибка оценки, рассчитываемая по формуле

Указания к выполнению контрольных заданий 1 страница - student2.ru .

Так как нулевая гипотеза предполагает, что Указания к выполнению контрольных заданий 1 страница - student2.ru =0, то tнабл. рассчитывается как:

Указания к выполнению контрольных заданий 1 страница - student2.ru .

Для определения табличного значения воспользуйтесь таблицами распределения Стьюдента для заданного уровня значимости α, принимая во внимание, что число степеней свободы для распределения Стьюдента равно (k = n - 2).

Для нашего примера Указания к выполнению контрольных заданий 1 страница - student2.ru , а Указания к выполнению контрольных заданий 1 страница - student2.ru =2,07, следовательно нулевая гипотеза отвергается в пользу альтернативной и коэффициент регрессии Указания к выполнению контрольных заданий 1 страница - student2.ru статистически значим, то есть наличие существенной линейной зависимости между количеством миль, проведенных в путешествии и величиной расходов статистически подтверждается.

Оценка статистической значимости построенной модели регрессии в целом производится с помощью F- критерия Фишера. Фактическое значение F-критерия качества оценивания регрессии, который представляет собой отношение объясненной суммы квадратов SSR (в расчете на одну независимую переменную) к остаточной сумме квадратов SSE (в расчете на одну степень свободы), определяется как:

Указания к выполнению контрольных заданий 1 страница - student2.ru ,

где SSR = Указания к выполнению контрольных заданий 1 страница - student2.ru - факторная, или объясненная моделью регрессии, сумма квадратов,

Указания к выполнению контрольных заданий 1 страница - student2.ru - остаточная, или необъясненная моделью сумма квадратов

k - число независимых переменных.

F - критерий можно выразить через коэффициент детерминации:

Указания к выполнению контрольных заданий 1 страница - student2.ru .

Для определения табличного значения воспользуйтесь таблицами распределения Фишера-Снедекора для заданного уровня значимости α, принимая во внимание, что в случае парной регрессии число степеней свободы большей дисперсии равно 1, а число степеней свободы меньшей дисперсии равно n - 2.

Для нашего примера Указания к выполнению контрольных заданий 1 страница - student2.ru =671, 137, а Указания к выполнению контрольных заданий 1 страница - student2.ru =4,45. Так как Указания к выполнению контрольных заданий 1 страница - student2.ru построенная модель регрессии в целом значима и может в дальнейшем использоваться нами для прогнозов.

Для выполнения пункта 5 необходимо изучить вопрос об интервальном оценивании в регрессионном анализе, уяснить смысл понятий “точечный прогноз” и “интервальный прогноз”. Для расчета точечного прогноза Указания к выполнению контрольных заданий 1 страница - student2.ru подставьте в уравнение регрессии заданное значение факторного признака Указания к выполнению контрольных заданий 1 страница - student2.ru .

Так, например, если необходимо оценить расходы путешественника, преодолевшего (собирающегося преодолеть) 4500 миль, следует использовать уравнение регрессии записанное нами в пункте 2:

Указания к выполнению контрольных заданий 1 страница - student2.ru , то есть в среднем путешественник, преодолевший 4500 миль израсходует 5915,7215 условных денежных единиц.

Доверительный интервал для значений Указания к выполнению контрольных заданий 1 страница - student2.ru , лежащих на линии регрессии, имеет вид:

Указания к выполнению контрольных заданий 1 страница - student2.ru ,

где

Указания к выполнению контрольных заданий 1 страница - student2.ru

Указания к выполнению контрольных заданий 1 страница - student2.ru - прогнозное значение зависимой переменной;

Указания к выполнению контрольных заданий 1 страница - student2.ru - стандартная ошибка оценки;

n - объем выборки;

Указания к выполнению контрольных заданий 1 страница - student2.ru - заданное значение Указания к выполнению контрольных заданий 1 страница - student2.ru .

Полученный интервал будет характеризовать значения результативного признака при заданном значении факторного признака Указания к выполнению контрольных заданий 1 страница - student2.ru для отдельной наблюдаемой единицы.

Так, для нашего примера этот доверительный интервал будет выглядеть как 5247,8367 Указания к выполнению контрольных заданий 1 страница - student2.ru 6582,9665, то есть с вероятностью 0,95 можно утверждать, что расходы одного путешественника, преодолевшего 4500 миль составят от 5247,8367 до 6582,9665 условных денежных единиц.

Если же необходимо сделать вывод об интервале значений результативного признака для всех наблюдаемых единиц при среднем значении факторного признака Указания к выполнению контрольных заданий 1 страница - student2.ru , расчет будет производиться по формуле доверительного интервала генерального значения Указания к выполнению контрольных заданий 1 страница - student2.ru :

Указания к выполнению контрольных заданий 1 страница - student2.ru .

В соответствии с условиями рассматриваемого примера доверительный интервал, характеризующий расходы всех путешественников, преодолевших 4500 миль будет выглядеть как 5730,918 Указания к выполнению контрольных заданий 1 страница - student2.ru 6099,885, то есть расходы всехпутешественников, преодолевших расстояние в 4500 миль составят от 5730,918 до 6099,885 условных денежных единиц.

Сделайте выводы по задаче в целом.

Задача 2 по теме “Множественная регрессия и корреляция”.

Задача предполагает построение и анализ двухфакторного уравнения линейной регрессии вида:

Указания к выполнению контрольных заданий 1 страница - student2.ru .

Рассмотрим методику решения задачи такого типа на примере:

Компания, производящая моющие средства, предприняла рекламную акцию в магазинах с демонстрацией антисептических свойств нового моющего средства. В этот же период компания использовала обычную теле- и радиорекламу. Через 20 недель компания решила проанализировать сравнительную эффективность различных видов рекламных расходов. Аналитик компании, исходя из гипотезы о линейной регрессионной взаимосвязи, оценил параметры модели следующего вида:

Указания к выполнению контрольных заданий 1 страница - student2.ru ,

где

Указания к выполнению контрольных заданий 1 страница - student2.ru – объем продаж моющего средства,

Указания к выполнению контрольных заданий 1 страница - student2.ru – расходы на теле и радио рекламу,

Указания к выполнению контрольных заданий 1 страница - student2.ru – расходы на демонстрацию товара в магазинах.

Расходы приведены в условных денежных единицах.

Таблица 1. Исходные данные

Номера наблюдений Указания к выполнению контрольных заданий 1 страница - student2.ru Указания к выполнению контрольных заданий 1 страница - student2.ru Указания к выполнению контрольных заданий 1 страница - student2.ru
1 72 12 5
2 76 11 7
3 78 15 6
4 70 10 5
5 68 11 3
6 80 16 7
7 82 14 3
8 65 8 4
9 62 8 3
10 90 18 5

Пункт 1 посвящен анализу показателей тесноты связи в уравнении множественной регрессии.

Но прежде чем приступить к анализу показателей тесноты связи необходимо рассмотреть дискриптивные (описательные статистики), которые подробно изучались в курсах математической статистики с элементами теории вероятностей и общей теории статистики

Таблица 2. Дискриптивные статистики

Наши рекомендации