Методом симметричных составляющих.

В результате различного вида коротких замыканий в сложной энергосис­теме возни­кает несимметричный режим. Расчет токов коротких замыканий в различных точках энер­госистемы является важной инженерной задачей. Также расчеты выполняются методом симметричных составляющих.

В качестве примера рассмотрим определение тока однофазного короткого замыкания на землю в заданной точке простейшей энергосистемы. Символьная схема энергосистемы показана на рис. 110. Короткое замыкание фазы А на землю происходит в конце линии элек­тропередачи.

Методом симметричных составляющих. - student2.ru

В соответствии с теоремой о компенсации заменим (мысленно) несиммет­ричный уча­сток в точке короткого замыкания несимметричным трехфазным генератором (UA, UB, UC, причем UA =0). Несимметричную систему векторов напряжений разложим (мысленно) на симметричные составляющие UA1, UA2, UA0. Для каждой из симметричных составляющих схема цепи совершенно сим­метрична и может быть представлена в однофазном виде. По­этому составля­ются однофазные схемы для прямой (рис. 111), обратной (рис. 112) и нулевой (рис. 113) последовательно­стей.

       
  Методом симметричных составляющих. - student2.ru
 
    Методом симметричных составляющих. - student2.ru

Далее в соответствии с теоремой об эквивалентном генераторе произво­дится свертка расчетных схем для каждой из симметричных составляющих от­носительно выводов несим­метричного участка ab. В результате свертки полу­чаются простейшие одноконтурные схемы (рис. 114а, б, в):

 
  Методом симметричных составляющих. - student2.ru

Для каждой из расчетных схем (рис. 114а, б, в) составляются уравнения по 2-му закону Кирхгофа:

Методом симметричных составляющих. - student2.ru Методом симметричных составляющих. - student2.ru (1)

Методом симметричных составляющих. - student2.ru (2) Методом симметричных составляющих. - student2.ru

Методом симметричных составляющих. - student2.ru (3)

В полученной системе уравнений Кирхгофа содержится 6 неизвестных ве­личин (IA1, IA2, IA0, UA1, UA2, UA0) и ее непосредственное решение невозможно. Поэтому система урав­нений Кирхгофа дополняется тремя недостающими урав­нениями, вытекающими из вида короткого замыкания. В рассматриваемом примере в точке короткого замыкания напряже­ние фазы А равно нулю (UA = 0), а также токи фаз В и С равны нулю (IB = IC = 0). Дополни­тельные уравнения бу­дут иметь вид:

Методом симметричных составляющих. - student2.ru Методом симметричных составляющих. - student2.ru (4)

Методом симметричных составляющих. - student2.ru (5)

Методом симметричных составляющих. - student2.ru (6)

В результате совместного решения системы из 6-и уравнений определя­ются симмет­ричные составляющие токов IA1, IA2, IA0. В рассматриваемом при­мере решение системы мо­жет быть выполнено в следующей последовательно­сти.

1) Вычитаем почленно из уравнения (5) уравнение (6) и получаем:

Методом симметричных составляющих. - student2.ru , откуда следует, что IA1 = IA2.

2) Складываем почленно уравнение (5) и уравнение (6) и с учетом, что а2 – а = -1, по­лучаем: Методом симметричных составляющих. - student2.ru , откуда следует, что IA1 = IA2 = IA0.

3) Складываем почленно уравнения (1), (2), (3) и с учетом уравнения (4) и ра­венства IA1 = IA2 = IA0 получаем:

Методом симметричных составляющих. - student2.ru , откуда следует ре­шение для тока:

Методом симметричных составляющих. - student2.ru .

Все действительные токи определяются по методу наложения через соот­ветствующие симметричные составляющие, например, ток короткого замыка­ния равен току фазы А:

Методом симметричных составляющих. - student2.ru .

Наши рекомендации