Основные развивающие и воспитательные цели
Развитие:
· Ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
· Математической речи;
· Сенсорной сферы; двигательной моторики;
· Внимания; памяти;
· Навыков само и взаимопроверки.
Формированиепредставлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.
Воспитание:
· Культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
· Волевых качеств;
· Коммуникабельности;
· Ответственности.
Нормы оценки знаний, умений и навыков учащихся
Оценка устного ответа
Отметка «5»
- ответ полный и правильный на основании изученного материала;
- материал изложен в определенной логической последовательности, литературным языком;
- ответ самостоятельный.
Отметка «4»
- ответ полный и правильный на основании изученного материала;
- материал изложен в определенной логической последовательности, при этом допущены две-три несущественные ошибки, исправленные по требованию учителя.
Отметка «3»
- ответ полный, но при этом допущена существенная ошибка или ответ неполный, несвязный.
Отметка «2»
- при ответе обнаружено непонимание учащимся основного содержания учебного материала или допущены существенные ошибки, которые учащийся не может исправить при наводящих вопросах учителя.
Отметка «2» отмечает такие недостатки в подготовке ученика, которые являются серьезным препятствием к успешному овладению последующим материалом.
Отметка «1»
- отсутствие ответа;
- полное незнание или непонимание материала.
Отметка («5», «4», «3») может ставиться не только за единовременный ответ (когда на проверку подготовки ученика отводится определенное время), но и за рассредоточенный во времени, т.е. сумму ответов, данных учеником на протяжении урока (выводится поурочный балл), при условии, если в процессе урока не только заслушивались ответы учащегося, но и осуществлялась проверка его умения применять полученные знания.
Оценка письменных контрольных, самостоятельных и практических работ
Оценка "5"
Оценка "5" ставится:
а) работа выполнена полностью и без ошибок;
б) количество недочетов в такой работе не должно превышать двух.
Оценка "4"
Оценка "4" ставится:
а) работа выполнена полностью, но содержит не более 3-4 недочетов;
б) из всех предложенных заданий не выполнено одно задание;
в) содержит одну грубую ошибку.
Оценка "3"
Оценка "3" ставится:
а) выполнено верно половина из всех предложенных заданий
б) работа содержит не более 5-7 недочетов.
Оценка "2"
Оценка "2" ставится во всех остальных случая
Грубые ошибки.
К грубым ошибкам относятся ошибки, которые обнаруживают незнание учащимися формул, правил, основных свойств, теорем и неумение их применять, незнание приемов решения задач, рассматриваемых в учебных пособиях, а также вычислительные ошибки, если он не являются опиской.
Негрубые ошибки.
К негрубым ошибкам относятся:
- потеря корня или сохранение в ответе постороннего корня;
- отбрасывание без объяснения одного из корня и равнозначные им.
К недочетам относятся:
- нерациональное решение, описки, недостаточность;
- отсутствие пояснений, обоснований в решениях.
Если одна и та же ошибка (один и тот же недочет) встречаются несколько раз, то это рассматривается как одна ошибка (один недочет).
Зачеркивание в работе (желательно, чтобы они были аккуратными) свидетельствует о поисках решения, что считать ошибкой не следует.
II. Содержание тем учебного курса
Делимость чисел (20 ч)
Делители и кратные числа. Общий делитель и общее кратное. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители.
Основная цель — завершить изучение натуральных чисел, подготовить основу для освоения действий с обыкновенными дробями.
В данной теме завершается изучение вопросов, связанных с натуральными числами. Основное внимание должно быть уделено знакомству с понятиями «делитель» и «кратное», которые находят применение при сокращении обыкновенных дробей и при их приведении к общему знаменателю. Упражнения полезно выполнять с опорой на таблицу умножения — прямым подбором.
Определенное внимание уделяется знакомству с признаками делимости, понятиям простого и составного чисел. При их изучении целесообразно формировать умения проводить простейшие умозаключения, обосновывая свои действия ссылками на определение, правило.
Учащиеся должны уметь разложить число на множители. Например, они должны понимать, что 36 = 6· 6 = 4· 9 = 2 ·18 и т. п. Умения разложить число на простые множители не обязательно добиваться от всех учащихся.