Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и .

Греческий алфавит

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru альфа alpha

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru бета beta

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru гамма gamma

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru дельта delta

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru эпсилон epsilon

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru дзета zeta

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru эта eta

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru (или Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru ) тета theta

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru йота iota

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru каппа kappa

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru ламбда lambda

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru мю mu

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru ню nu

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru кси xi

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru омикрон omicron

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru пи pi

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru ро rho

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru сигма sigma

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru тау tau

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru ипсилон upsilon

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru (или Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru ) фи phi

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru хи chi

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru пси psi

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru омега omega

Эквивалентные функции

при Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

1. .

2. .

3. .

4. .

5. .

6. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

7. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

8. .

9. .

Где .

11. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ruгдеВсюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

12. .

Сравнение функций. O(f) и o(f).

1. .

2. .

3. .

4. .

5. .

6. .

7. .

8. .

9. .

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

10. .

11. .

12. .

12. .

13. .

14. .

15. .

16. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

Таблица производных

1. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

2. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

3. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

4. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

5. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

6. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru
7. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

8. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

9. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

10. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

11. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

12. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

13. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ruгдеВсюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

14. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ruгдеВсюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

15. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

16. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

Производные высших порядков

1) Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru ;

2) Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru ;

3) Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru ;

4) Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru ;

5) Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

Если функции Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru и Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru имеют производные порядка Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , то функции Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru ( Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru -постоянные) и Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru также имеют производные порядка Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , причем

6) Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru ;

7) Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru - формула Лейбница.

Формулы Маклорена для основных элементарных функций

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

1. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

2. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

3. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

4. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ruгдеВсюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

5. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ruгдеВсюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

6. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

6.1. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

7. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

7.1. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

8. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

9. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

10. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

Если Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru - четная функция, то: Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

если Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru - нечетная функция, то: Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

Исследование функций и построение графиков

1.Найти область определения функции.

2.Исследовать, не является ли функция четной или нечетной.

3.Исследовать, не является ли функция периодической.

4.Исследовать поведение функции в окрестности точек разрыва. Выписать вертикальные асимптоты.

5.Найти точки пересечения с осями координат и промежутки постоянства знака.

6.Найти горизонтальные и наклонные асимптоты.

7.Определить промежутки убывания и возрастания функции, а также точки экстремума.

8.Найти точки перегиба и установить промежутки выпуклости вверх и вниз графика функции.

9.Построить график функции.

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

Исследование функций и построение графиков

1.Найти область определения функции.

2.Исследовать, не является ли функция четной или нечетной.

3.Исследовать, не является ли функция периодической.

4.Исследовать поведение функции в окрестности точек разрыва. Выписать вертикальные асимптоты.

5.Найти точки пересечения с осями координат и промежутки постоянства знака.

6.Найти горизонтальные и наклонные асимптоты.

7.Определить промежутки убывания и возрастания функции, а также точки экстремума.

8.Найти точки перегиба и установить промежутки выпуклости вверх и вниз графика функции.

9.Построить график функции.

Таблица неопределенных интегралов

1. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru 2. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

3. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

4. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

5. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

6. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

7. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

8. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru 9. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

10. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

11. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

12. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru где Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

13. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru где Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

14. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

15. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

16. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

17. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

18. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

19. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

20. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

21. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

22. Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru

Интегралы, сводящиеся к интегралам от рациональных функций

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и .

  1. Интегралы вида

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru . (1)

Положим Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru . Тогда Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

В силу формулы замены переменных в неопределённом интеграле

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru = Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

Т.о. вычисление интеграла вида (1) сводится к вычислению интеграла от рациональной функции переменной Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

  1. Интегралы вида

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru . (2)

Выражение, стоящее под знаком интеграла, называется биномиальным дифференциалом.

П.Л. Чебышев доказал, что интегралы этого вида выражаются через элементарные функции лишь в трёх случаях:

1) Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

Пусть Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru где Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

Положим Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru где Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru - наименьшее общее кратное чисел Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru и Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru . Данная замена переменной сводит вычисление интеграла (2) к вычислению интеграла от рациональной функции переменной Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

2) Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

Пусть Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru где Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

Положим Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru . Данная замена переменной приводит к вычислению интеграла от рациональной функции переменной Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

3) Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

Пусть Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru где Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru . Положим Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru . Данная замена переменной приводит к вычислению интеграла от рациональной функции переменной Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

  1. Интегралы вида

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru . (3)

Для рационализации интегралов этого вида применяются подстановки Эйлера трех типов.

1)Если Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , то полагаем

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru или Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

2)Если Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , то полагаем

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru или Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

3)Если квадратный трехчлен Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru имеет различные вещественные корни Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru и Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , то полагаем

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru или Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

Подстановки Эйлера универсальны (т.е. применимы к любому интегралу указанного вида). Однако во многих случаях они приводят к неоправданно сложным рациональным функциям. Поэтому часто используют другие методы, основанные на элементарных преобразованиях.

Еще одна полезная формула, применимая к интегралам вида

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , где Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru полином Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru -й степени, Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru :

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

В этой формуле Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru многочлен Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru - й степени с неизвестными коэффициентами, Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru - неизвестный множитель. Для отыскания этих неизвестных величин указанное равенство дифференцируют, а результат после умножения на Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru и приравнивания коэффициентов при соответствующих степенях Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru дает систему уравнений для отыскания коэффициентов многочлена Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru и множителя Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

  1. Интегралы вида

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru (4)

всегда рационализируются универсальнойподстановкой

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru . Тогда Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

Специальные случаи:

1)Если Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , то полагаем Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

2)Если Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , то полагаем Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

3)Если Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , то полагаем Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru или Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

Иногда удобно преобразовывать подинтегральную функцию, имеющую вид произведения синусов и косинусов (или их степеней), в сумму, пользуясь формулами понижения степени или другими тригонометрическими формулами.

  1. Интегралы вида

Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru (5)

рационализируются при помощи подстановки Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru , где Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru - наименьшее общее кратное знаменателей чисел Всюду в указанных формулах через обозначается некоторая рациональная функция от переменных и ,т.е. , где - многочлены степеней и соответственно от переменных и . - student2.ru .

Наши рекомендации