Лагранжаили формулой конечных приращений

В дальнейшем эта формула будет очень часто применяться для доказательства самых разных теорем.

Иногда формулу Лагранжа записывают в несколько другом виде:

Лагранжаили формулой конечных приращений - student2.ru ,

где 0 < q < 1, Dx = b – a, Dy = f(b) – f(a).

Теорема Коши.

( Коши (1789-1857)- французский математик)

Лагранжаили формулой конечных приращений - student2.ru Если функции f(x) и g(x) непрерывны на отрезке [a, b] и дифференцируемы на интервале (a, b) и g¢(x) ¹ 0 на интервале (a, b), то существует по крайней мере одна точка e, a < e < b, такая, что

Лагранжаили формулой конечных приращений - student2.ru .

Т.е. отношение приращений функций на данном отрезке равно отношению производных в точке e.

Для доказательства этой теоремы на первый взгляд очень удобно воспользоваться теоремой Лагранжа. Записать формулу конечных разностей для каждой функции, а затем разделить их друг на друга. Однако, это представление ошибочно, т.к. точка e для каждой из функции в общем случае различна. Конечно, в некоторых частных случаях эта точка интервала может оказаться одинаковой для обеих функций, но это - очень редкое совпадение, а не правило, поэтому не может быть использовано для доказательства теоремы.

Доказательство. Рассмотрим вспомогательную функцию

Лагранжаили формулой конечных приращений - student2.ru ,

которая на интервале [a, b] удовлетворяет условиям теоремы Ролля. Легко видеть, что при х = а и х = b F(a) = F(b) = 0. Тогда по теореме Ролля существует такая точка e,

a < e < b, такая, что F¢(e) = 0. Т.к.

Лагранжаили формулой конечных приращений - student2.ru , то

Лагранжаили формулой конечных приращений - student2.ru

А т.к. Лагранжаили формулой конечных приращений - student2.ru , то Лагранжаили формулой конечных приращений - student2.ru

Теорема доказана.

Следует отметить, что рассмотренная выше теорема Лагранжа является частным случаем (при g(x) = x) теоремы Коши. Доказанная нами теорема Коши очень широко используется для раскрытия так называемых неопределенностей. Применение полученных результатов позволяет существенно упростить процесс вычисления пределов функций, что будет подробно рассмотрено ниже.

Раскрытие неопределенностей.

Правило Лопиталя.

(Лопиталь (1661-1704) – французский математик)

К разряду неопределенностей принято относить следующие соотношения:

Лагранжаили формулой конечных приращений - student2.ru

Теорема (правило Лопиталя). Если функции f(x) и g(x) дифференцируемы в вблизи точки а, непрерывны в точке а, g¢(x) отлична от нуля вблизи а и f(a) = g(a) = 0, то предел отношения функций при х®а равен пределу отношения их производных, если этот предел (конечный или бесконечный) существует.

Лагранжаили формулой конечных приращений - student2.ru

Доказательство. Применив формулу Коши, получим:

Лагранжаили формулой конечных приращений - student2.ru

где e - точка, находящаяся между а и х. Учитывая, что f(a) = g(a) = 0:

Лагранжаили формулой конечных приращений - student2.ru

Пусть при х®а отношение Лагранжаили формулой конечных приращений - student2.ru стремится к некоторому пределу. Т.к. точка e лежит между точками а и х, то при х®а получим e®а, а следовательно и отношение Лагранжаили формулой конечных приращений - student2.ru стремится к тому же пределу. Таким образом, можно записать:

Лагранжаили формулой конечных приращений - student2.ru .

Теорема доказана.

Пример: Найти предел Лагранжаили формулой конечных приращений - student2.ru .

Как видно, при попытке непосредственного вычисления предела получается неопределенность вида Лагранжаили формулой конечных приращений - student2.ru . Функции, входящие в числитель и знаменатель дроби удовлетворяют требованиям теоремы Лопиталя.

f¢(x) = 2x + Лагранжаили формулой конечных приращений - student2.ru ; g¢(x) = ex;

Лагранжаили формулой конечных приращений - student2.ru ;

Пример: Найти предел Лагранжаили формулой конечных приращений - student2.ru .

Лагранжаили формулой конечных приращений - student2.ru ; Лагранжаили формулой конечных приращений - student2.ru ;

Лагранжаили формулой конечных приращений - student2.ru .

Если при решении примера после применения правила Лопиталя попытка вычислить предел опять приводит к неопределенности, то правило Лопиталя может быть применено второй раз, третий и т.д. пока не будет получен результат. Естественно, это возможно только в том случае, если вновь полученные функции в свою очередь удовлетворяют требованиям теоремы Лопиталя.

Пример: Найти предел Лагранжаили формулой конечных приращений - student2.ru .

Лагранжаили формулой конечных приращений - student2.ru ; Лагранжаили формулой конечных приращений - student2.ru ;

Лагранжаили формулой конечных приращений - student2.ru ; Лагранжаили формулой конечных приращений - student2.ru ;

Лагранжаили формулой конечных приращений - student2.ru

Лагранжаили формулой конечных приращений - student2.ru ; Лагранжаили формулой конечных приращений - student2.ru ; Лагранжаили формулой конечных приращений - student2.ru

Следует отметить, что правило Лопиталя – всего лишь один из способов вычисления пределов. Часто в конкретном примере наряду с правилом Лопиталя может быть использован и какой – либо другой метод (замена переменных, домножение и др.).

Пример: Найти предел Лагранжаили формулой конечных приращений - student2.ru .

Лагранжаили формулой конечных приращений - student2.ru ; Лагранжаили формулой конечных приращений - student2.ru ;

Лагранжаили формулой конечных приращений - student2.ru - опять получилась неопределенность. Применим правило Лопиталя еще раз.

Лагранжаили формулой конечных приращений - student2.ru ; Лагранжаили формулой конечных приращений - student2.ru ;

Лагранжаили формулой конечных приращений - student2.ru - применяем правило Лопиталя еще раз.

Лагранжаили формулой конечных приращений - student2.ru ; Лагранжаили формулой конечных приращений - student2.ru ;

Лагранжаили формулой конечных приращений - student2.ru ;

Неопределенности вида Лагранжаили формулой конечных приращений - student2.ru можно раскрыть с помощью логарифмирования. Такие неопределенности встречаются при нахождении пределов функций вида Лагранжаили формулой конечных приращений - student2.ru , f(x)>0 вблизи точки а при х®а. Для нахождения предела такой функции достаточно найти предел функции lny = g(x)lnf(x).

Пример: Найти предел Лагранжаили формулой конечных приращений - student2.ru .

Здесь y = xx, lny = xlnx.

Тогда Лагранжаили формулой конечных приращений - student2.ru . Следовательно Лагранжаили формулой конечных приращений - student2.ru

Пример: Найти предел Лагранжаили формулой конечных приращений - student2.ru .

Лагранжаили формулой конечных приращений - student2.ru ; Лагранжаили формулой конечных приращений - student2.ru - получили неопределенность. Применяем правило Лопиталя еще раз.

Лагранжаили формулой конечных приращений - student2.ru ; Лагранжаили формулой конечных приращений - student2.ru ;

Производные и дифференциалы высших порядков.

Пусть функция f(x)- дифференцируема на некотором интервале. Тогда, дифференцируя ее, получаем первую производную

Лагранжаили формулой конечных приращений - student2.ru

Если найти производную функции f¢(x), получим вторую производнуюфункции f(x).

Лагранжаили формулой конечных приращений - student2.ru

т.е. y¢¢ = (y¢)¢ или Лагранжаили формулой конечных приращений - student2.ru .

Этот процесс можно продолжить и далее, находя производные степени n.

Лагранжаили формулой конечных приращений - student2.ru .

Общие правила нахождения высших производных.

Если функции u = f(x) и v = g(x) дифференцируемы, то

1) (Сu)(n) = Cu(n);

2) (u ± v)(n) = u(n) ± v(n);

3) Лагранжаили формулой конечных приращений - student2.ru

Лагранжаили формулой конечных приращений - student2.ru .

Это выражение называется формулой Лейбница.

Также по формуле dny = f(n)(x)dxn может быть найден дифференциал n- го порядка.

Исследование функций с помощью производной.

Возрастание и убывание функций.

Теорема. 1) Если функция f(x) имеет производную на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. f¢(x) ³ 0.

2) Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на промежутке (а, b), причем f¢(x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b].

Наши рекомендации