Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью

Для получения сжатия более 13-ти применяют так называемые бинарные кодирующие последовательности максимального периода (ПМП или М-последовательности).

Генерирование псевдослучайных двоичных М-последовательностей осуществляется схемой C-разрядного регистра сдвига (РС) с комбинационной логической схемой (КС) в цепи обратной связи (рис.4.13).

Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью - student2.ru

Рис.4.13.

Структура КС выбирается в соответствии с рекуррентным соотношением

dC XC Å dC-1XC-1Å…Åd1X1Å d0X0 =0. (4.3)

В уравнении (4.3) Xi представляют собой выходные сигналы i-х каскадов (триггерных элементов Тi) регистра сдвига (X0 – входной сигнал первого каскада регистра сдвига), которые принимают в фиксированные моменты времени значения 0 или 1. Коэффициенты di также равны 0 или 1, причем всегда d0 = 1, так как сигнал с выхода комбинационной схемы обязательно должен подаваться на вход регистра сдвига, Å – операция сложения по модулю два.

Учитывая свойства операции сложения по модулю два, уравнение (4.3) можно преобразовать в следующее соотношение:

X0 = dC XC Å dC-1 XC-1 Å… Åd1 X1, (4.4)

определяющее сумму, которая в каждом такте работы записывается из КС в первый элемент регистра сдвига (РС). Выходные сигналы X1, X2,…, XC триггерных элементов Т1, Т2, …, ТС регистра сдвига представляют собой периодические двоичные последовательности символов a1, a2,…, ai,…, aN, сдвинутых относительно друг друга на один элемент (ai принадлежит алфавиту (0,1)).

Выходной сигнал i-го триггерного элемента Xi можно выразить через последовательность на выходе (i – k)- го разряда при помощи оператора задержки следующим образом:

Xi =Xi-k Dk, (4.5)

где D – оператор задержки на один такт.

Используя (4.5) , преобразуем рекуррентное соотношение (4.3) к виду:

Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью - student2.ru

Выражение, стоящее в скобках, представляет собой многочлен степени C относительно D (многочлен задержки). Как показывает анализ, работа формирователя двоичных последовательностей определяется характеристическим многочленом некоторой переменной x, сопряженным с многочленом задержки:

f(x)= xCÅd1 xC-1 Å…Å dC-1 x Å dC.

Для того чтобы выходная последовательность имела максимально возможный период Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью - student2.ru , характеристический многочлен должен быть неприводимым и примитивным. Значения коэффициентов характеристических многочленов ПМП до C=7 включительно даны в табл. 1 (где d0 =dC =1).

Таблица 1.

С d0 d1 d2 d3 d4 d5 d6 d7
     
       
   
     
     
     
     
     
 
   
   
   
   
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Заметим, что любому набору коэффициентов di характеристического многочлена соответствует набор с инверсным расположением коэффициентов Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью - student2.ru , причем

Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью - student2.ru

В качестве примера определим структуру формирователя ПМП, соответствующую многочлену, коэффициенты которого приведены в строке 6 табл.1 . Для этого случая C = 5, d0 = d1 = d2 = d3 = d5 = 1, d4 = 0.

Многочлен задержки имеет вид D5Å D3Å D2Å DÅ1, а входной сигнал первого регистра сдвига определяется уравнением

X0= X5Å X3Å X2Å X1.

Значения коэффициентов неприводимых примитивных многочленов для С >7 можно найти в работах, посвященных применению шумоподобных сигналов в системах связи.

Схема генератора ПМП приведена на рис.4.14.

Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью - student2.ru

Рис. 4.14.

Для получения М-последовательности в регистр сдвига необходимо записать начальный блок из С двоичных элементов (a1, a2,…, aC), который не может состоять из одних нулей (в противном случае все элементы генерирующей поверхности будут равны нулю). После подачи тактовых импульсов на выходе формирователя образуется двоичная последовательность, первые С элементов которой являются элементами начального блока. Элементы aC-1,…, aN получаются в результате выполнения операции суммирования С предыдущих элементов последовательности в соответствии с рекуррентным соотношением (4.4) на каждом последующем такте работы РС. Поэтому для элемента ai можно записать

ai=d1ai-1 Å d2 ai-2 Å…Å dC ai-C

или в более компактной форме

Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью - student2.ru (4.6)

где символ åÅ означает суммирование по модулю два.

При расчете корреляционных функций сигналов и ПМП удобно перейти от двоичного алфавита {0,1} к алфавиту {+1,-1}. Тогда операция сложения по модулю два в алфавите {0,1}:

Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью - student2.ru

заменяется операцией умножения в алфавите {+1,-1}

Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью - student2.ru

а рекуррентное правило (4.6) получения элементов ПМП преобразуется к виду:

Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью - student2.ru (4.7)

М-последовательности обладают рядом свойств, которые и определяют их хорошие корреляционные свойства. Приведем некоторые из них:

– число единиц в М-последовательности на единицу больше числа нулей;

– в М-последовательности содержатся все С-значные комбинации двоичных символов, кроме нулевой;

– сумма по модулю 2 элементов периода повторения М-последовательности с этой же последовательностью, но сдвинутой на любое число элементов, кроме числа, равного периоду, является М-последовательностью того же вида, но имеющей другой сдвиг;

– последовательность, полученная в результате суммирования М- последовательностей различных периодов, также периодична, причем ее период равен наименьшему кратному периодов суммируемых последовательностей;

– при заданном С число различных М-последовательностей Q, т.е. различных правил кодообразования, определяется выражением:

Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью - student2.ru

где φ(x) – функция Эйлера, которая определяет количество чисел, включая единицу, меньших x и взаимно простых с x.

Соотношение для вычисления корреляционной функции комплексной огибающей радиосигнала, манипулированного по фазе на два уровня (0, p) в соответствии с ПМП, можно получить из общего выражения для функции неопределенности (3.6), положив f = 0. Если элементарные сигналы, соответствующие одному символу ПМП, имеют прямоугольную огибающую, то нормированная КФ видеосигнала, манипулированного ПМП, определится следующим выражением:

Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью - student2.ru

где r(k) – нормированная дискретная корреляционная функция М-последовательности,

k – дискретный временной сдвиг, равный целому числу элементов, на которое сдвинуты кодирующие М- последовательности, k = 0, 1, 2…..

tu – длительность элементарного сигнала.

Рассмотрим корреляционные функции кодирующих ПМП, используемые на практике:

а) Корреляционная функция непрерывной периодической последовательности вычисляется по формуле:

Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью - student2.ru

Как видно, нормированная корреляционная функция имеет основной выброс, равный 1, и боковые выбросы, относительный уровень которых равен 1/N (рис.4.15). С ростом N корреляционная функция таких сигналов приближается к идеальной, когда боковые выбросы по сравнению с основными становятся пренебрежительно малыми.

Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью - student2.ru

Рис.4.15.

б) Корреляционная функция единичной сигнальной посылки, кодированной периодом ПМП из N элементов:

Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью - student2.ru

В этом случае корреляционная функция будет иметь наибольшие боковые выбросы, равные примерно Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью - student2.ru , что вытекает из псевдослучайного характера последовательности, в которой содержится приблизительно одинаковое число элементов +1 и –1 (рис.4.16).

Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью - student2.ru

Рис.4.16.

Однако можно найти такие М-последовательности, у которых будет более удачное сочетание разнополярных символов, в результате чего уровень наибольших боковых выбросов может быть меньше 1/N.

в) Корреляционная функция пачки сигнальных посылок, кодированных периодом ПМП из N элементов или усеченным периодом из P элементов (1 ≤ P ≤ N). Число сигнальных посылок Т = 2Р элементов. Структура такого сигнала показана на рис.4.17.

Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью - student2.ru

Рис. 4.17.

Значения корреляционной функции вычисляются по формуле:

Сложные сигналы, манипулированные по фазе двоичной псевдослучайной последовательностью - student2.ru (4.8)

где индексы элементов в скобках a(i) = ai, n – дискретный сдвиг последовательностей, равный целому числу периодов повторения Т сигнальных посылок (0 ≤ n ≤ N –1), m – дискретный сдвиг последовательностей, равный числу элементов, на которое сдвинуты сигналы внутри периода, – (P –1) ≤ m ≤ (P –1), значок modN – суммирование по модулю N, q – циклический сдвиг ( сдвиг на q элементов вправо или влево) кодирующей последовательности в каждой последующей сигнальной посылке пачки 0 ≤ q ≤ N –1. Пределы суммирования определяются следующими соотношениями: b1 = 0, b2 = N –1 – n, b3 = max(0, – m), b4 = min(P –1, P –1– m).

Заметим, что при q = 0 все сигнальные посылки пачки кодируются одним и тем же периодом ПМП. Для q = 1 все сигнальные посылки пачки кодируются ПМП, сдвинутыми относительно друг друга на один элемент. Как показывают расчеты, уровень боковых выбросов корреляционной функции на интервале задержек –N ≤ k ≤ N не превышает значения 1/N, которое характерно для боковых выбросов непрерывной ПМП.

Наши рекомендации