Автокорреляция уровней динамического ряда и выявление его структуры.
Временной ряд будет нестационарным, если он содержит такие систематические составляющие как тренд и цикличность.
Нестационарные временные ряды характеризуются тем, что значения каждого последующего уровня временного ряда корреляционно зависят от предыдущих значений.
Автокорреляцией уровней временного ряда называется корреляционная зависимость между настоящими и прошлыми значениями уровней данного ряда.
Лагом l называется величина сдвига между рядами наблюдений.
Лаг временного ряда определяет порядок коэффициента автокорреляции. К примеру, если уровни временного ряда xt и xt–1 корреляционно зависимы, то величина временного лага равна единице. Следовательно, данная корреляционная зависимость определяется коэффициентом автокорреляции первого порядка между рядами наблюдений x1…xn–1 и x2…xn. . В случае если лаг между рядами наблюдений равен двум, то данная корреляционная зависимость определяется коэффициентом автокорреляции второго порядка и т. д.
При увеличении величины лага на единицу число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается на единицу. Поэтому максимальный порядок коэффициента автокорреляции рекомендуется брать равным n/4, где n – количество уровней временного ряда.
Автокорреляция между уровнями временного ряда оценивается с помощью выборочного коэффициента автокорреляции
Структуру временного ряда можно определить, рассчитав несколько последовательных коэффициентов автокорреляции. В результате данных вычислений можно выявить лаг l, для которого значение выборочного коэффициента автокорреляции rl будет наибольшим.
Анализ структуры временного ряда с помощью коэффициентов автокорреляции стоится на следующих правилах:
1) исследуемый временной ряд содержит только трендовую компоненту, если наибольшим будет значение коэффициента автокорреляции первого порядка rl–1;
2) исследуемый временной ряд содержит трендовую компоненту и колебания периодом l, если наибольшим будет коэффициент автокорреляции порядка l. Эти колебания могут быть как циклическими, так и сезонными;
3) если ни один из коэффициентов автокорреляции rl(l=1,L) не окажется значимым, то делается один из двух возможных выводов:
а) данный временной ряд не содержит трендовой и циклической компонент, а его колебания вызваны воздействием случайной компоненты, т. е. ряд представляет собой модель случайного тренда;
б) данный временной ряд содержит сильную нелинейную тенденцию, для выявления которой крайне важно провести его дополнительный анализ.