Оценивание параметров структурной модели
Коэффициенты структурной модели могут быть оценены разными способами в зависимости от вида системы одновременных уравнений. Наибольшее распространение в литературе получили следующие методы оценивания коэффициентов структурной модели:
· косвенный метод наименьших квадратов (КМНК);
· двухшаговый метод наименьших квадратов (ДМНК);
· трехшаговый метод наименьших квадратов (ТМНК);
· метод максимального правдоподобия с полной информацией (ММПf);
· метод максимального правдоподобия при ограниченной
информации (ММПs).
Косвенный и двухшаговый методы наименьших квадратов подробно описаны в литературе и рассматриваются как традиционные методы оценки коэффициентов структурной модели. Эти методы достаточно легкореализуемы. Косвенный метод наименьших квадратов применяется для идентифицируемой системы одновременных уравнений, а двухшаговый метод наименьших квадратов — для оценки коэффициентов сверхидентифииируемой модели.
Метод максимального правдоподобия рассматривается как наиболее общий метод оценивания, результаты которого при нормальном распределении признаков совпадают с МНК. Однако при большом числе уравнений системы этот метод приводит к достаточно сложным вычислительным процедурам. Поэтому в качестве модификации используется метод максимального правдоподобия при ограниченной информации (метод наименьшего дисперсионного отношения), разработанный в 1949 г. Т. Андерсоном и Н. Рубиным.
В отличие от метода максимального правдоподобия в данном методе сняты ограничения на параметры, связанные с функционированием системы в целом. Это делает решение более простым, но трудоемкость вычислений остается достаточно высокой. Несмотря на его популярность, к середине 1960-х годов он был практически вытеснен двухшаговым методом наименьших квадратов в связи с гораздо большей простотой последнего.
Дальнейшим развитием двухшагового метода наименьших квадратов является трехшаговый МНК (ТМНК), предложенный в 1962 г. А. Зельнером и Г. Тейлом. Этот метод оценивания пригоден для всех видов уравнений структурной модели. Однако при некоторых ограничениях на параметры более эффективным оказывается ДМНК.
Как уже отмечалось, косвенный метод наименьших квадратов используется в случае точно идентифицируемой структурной модели. Процедура применения КМНК предполагает выполнение следующих этапов работы:
· структурная модель преобразовывается в приведенную форму модели;
· для каждого уравнения приведенной формы модели обычным МНК оцениваются приведенные коэффициенты ( );
· коэффициенты приведенной формы модели трансформируются в параметры структурной модели.
Если система сверхидентифицируема, то КМНК не используется, ибо он не дает однозначных оценок для параметров структурной модели. В этом случае могут применяться разные методы оценивания, среди которых наиболее распространенным и простым является двухшаговый метод наименьших квадратов.
Основная идея ДМНК — на основе приведенной формы модели получить для сверхидентифицируемого уравнения теоретические значения эндогенных переменных, содержащихся в правой части уравнения. Далее, подставив их вместо фактических значений, можно применить обычный МНК к структурной форме сверхидентифицируемого уравнения. Метод получил название «двухшаговый метод наименьших квадратов», ибо МНК используется дважды: на первом шаге при определении приведенной формы модели и нахождении на ее основе оценок теоретических значений эндогенной переменной и на втором шаге применительно к структурному сверхидентифицируемому уравнению при определении структурных коэффициентов модели по данным теоретических (расчетных) значений эндогенных переменных.
Сверхидентифицируемая структурная модель может быть двух типов:
· все уравнения системы сверхидентифицируемы;
· система содержит наряду со сверхидентифицируемыми точно идентифицируемые уравнения.
Если все уравнения системы сверхидентифицируемые, то для оценки структурных коэффициентов каждого уравнения используется ДМНК. Если в системе есть точно идентифицируемые уравнения, то структурные коэффициенты по ним находятся из системы приведенных уравнений.
Таким образом можно сказать, несмотря на важность системы эконометрических уравнений, на практике часто не принимают во внимание некоторые взаимосвязи. Ее использование сопряжено с рядом сложностей, которые связаны с ошибками спецификации модели. Ввиду большого числа факторов, влияющих на экономические переменные, исследователь, как правило, не уверен в точности предлагаемой модели для описания экономических процессов. Набор эндогенных и экзогенных переменных модели соответствует теоретическому представлению исследователя о моделируемой объекте, которое сложилось в конкретный момент времени и может позднее изменится.