Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса)

Теперь нужно вычислить 9 миноров и записать их в матрицу миноров Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru

Справка: Полезно знать смысл двойных подстрочных индексов в линейной алгебре. Первая цифра – это номер строки, в которой находится данный элемент. Вторая цифра – это номер столбца, в котором находится данный элемент:
Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru
То есть, двойной подстрочный индекс указывает, что элемент Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru находится в первой строке, третьем столбце, а, например, элемент Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru находится в 3 строке, 2 столбце

В ходе решения расчет миноров лучше расписать подробно, хотя, при определенном опыте их можно приноровиться считать с ошибками устно.

Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru
Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru
Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru
Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru
Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru
Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru
Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru
Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru
Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru

Порядок расчета миноров совершенно не важен, здесь я их вычислил слева направо по строкам. Можно было рассчитать миноры по столбцам (это даже удобнее).

Таким образом:

Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru – матрица миноров соответствующих элементов матрицы Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru .

Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru – матрица алгебраических дополнений.

Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru – транспонированная матрица алгебраических дополнений.

Повторюсь, выполненные шаги мы подробно разбирали на уроке Как найти обратную матрицу?

Теперь записываем обратную матрицу:

Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru

Ни в коем случае не вносим Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru в матрицу, это серьезно затруднит дальнейшие вычисления. Деление нужно было бы выполнить, если бы все числа матрицы делились на 60 без остатка. А вот внести минус в матрицу в данном случае очень даже нужно, это, наоборот – упростит дальнейшие вычисления.

Осталось провести матричное умножение. Умножать матрицы можно научиться на урокеДействия с матрицами. Кстати, там разобран точно такой же пример.

Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru

Обратите внимание, что деление на 60 выполняется в последнюю очередь.
Иногда может и не разделиться нацело, т.е. могут получиться «плохие» дроби. Что в таких случаях делать, я уже рассказал, когда мы разбирали правило Крамера.

Ответ: Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru

Пример 12

Решить систему с помощью обратной матрицы.
Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru

Это пример для самостоятельного решения (образец чистового оформления и ответ в конце урока).

Наиболее универсальным способом решения системы является метод исключения неизвестных (метод Гаусса). Доступно объяснить алгоритм не так-то просто, но я старался!.

Желаю успехов!

Ответы:

Пример 3: Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru

Пример 6: Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru

Пример 8: Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru , Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru . Вы можете посмотреть или скачать образец решения данного примера (ссылка ниже).

Примеры 10, 12: Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru

7) Как решить систему линейных уравнений?

На данном уроке мы рассмотрим методы решения системы линейных уравнений. В курсе высшей математики системы линейных уравнений требуется решать как в виде отдельных заданий, например, «Решить систему по формулам Крамера», так и в ходе решения остальных задач. С системами линейных уравнений приходиться иметь дело практически во всех разделах высшей математики.

Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени: Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru без всяких причудливых вещей вроде Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru и т.п., от которых в восторге бывают только участники математических олимпиад.

В высшей математике для обозначения переменных используются не только знакомые с детства буквы Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru .
Довольно популярный вариант – переменные с индексами: Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru .
Либо начальные буквы латинского алфавита, маленькие и большие: Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru
Не так уж редко можно встретить греческие буквы: Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»: Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru

Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru

Но как бы ни обозначались переменные, принципы, методы и способы решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru , не спешите в страхе закрывать задачник, в конце-концов, вместо Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru можно нарисовать солнце, вместо Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru – птичку, а вместо Внимание! Если , то обратной матрицы не существует, и решить систему матричным методом невозможно. В этом случае система решается методом исключение неизвестных (методом Гаусса) - student2.ru – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.

Что-то у меня есть такое предчувствие, что статья получится довольно длинной, поэтому небольшое оглавление. Итак, последовательный «разбор полётов» будет таким::

Решение системы линейных уравнений методом подстановки («школьный метод»). – Решение системы методом почленного сложения (вычитания) уравнений системы. – Решение системы по формулам Крамера. – Решение системы с помощью обратной матрицы. – Решение системы методом Гаусса.

С системами линейных уравнений все знакомы из школьного курса математики. По сути дела, начинаем с повторения.

Наши рекомендации