Простой трубопровод постоянного сечения

Жидкость по трубопроводу движется благодаря тому, что ее энергия в начале трубопровода больше, чем в конце. Этот перепад уровней энергии может создаваться несколькими способами: работой насоса, разностью уровней жидкости, давлением газа.

Рассмотрим простой трубопровод постоянного сечения, который расположен произвольно в пространстве (рис. 6.1), имеет общую длину l и диаметр d, а также содержит ряд местных сопротивлений (вентиль, фильтр и обратный клапан). В начальном сечении трубопровода 1-1 геометрическая высота равна z1 и избыточное давление Р1, а в конечном сечении 2-2 - соответственно z2 и Р2. Скорость потока в этих сечениях вследствие постоянства диаметра трубы одинакова и равна ν.

Простой трубопровод постоянного сечения - student2.ru

Рис. 6.1. Схема простого трубопровода

Запишем уравнение Бернулли для сечений 1-1 и 2-2. Поскольку скорость в обоих сечениях одинакова и α1 = α2, то скоростной напор можно не учитывать. При этом получим

Простой трубопровод постоянного сечения - student2.ru

или

Простой трубопровод постоянного сечения - student2.ru

Пьезометрическую высоту, стоящую в левой части уравнения, назовем потребным напором Нпотр. Если же эта пьезометрическая высота задана, то ее называют располагаемым напором Нрасп. Такой напор складывается из геометрической высоты Hпотр, на которую поднимается жидкость, пьезометрической высоты в конце трубопровода и суммы всех потерь напора в трубопроводе.

Назовем сумму первых двух слагаемых статическим напором, который представим как некоторую эквивалентную геометрическую высоту

Простой трубопровод постоянного сечения - student2.ru

а последнее слагаемое Σh - как степенную функцию расхода

Σh = KQm

тогда

Hпотр = Hст + KQm

где K - величина, называемая сопротивлением трубопровода;
Q - расход жидкости;
m - показатель степени, который имеет разные значения в зависимости от режима течения.

Для ламинарного течения при замене местных сопротивлений эквивалентными длинами сопротивление трубопровода равно

Простой трубопровод постоянного сечения - student2.ru

где lрасч = l + lэкв.

Численные значения эквивалентных длин lэкв для различных местных сопротивлений обычно находят опытным путем.

Для турбулентного течения, используя формулу Вейсбаха-Дарси, и выражая в ней скорость через расход, получаем

Простой трубопровод постоянного сечения - student2.ru

Чем больше расход Q, который необходимо обеспечить в трубопроводе, тем больше требуется потребный напор Нпотр. При ламинарном течении эта кривая изображается прямой линией (рис.6.2, а), при турбулентном - параболой с показателем степени равном двум (рис.6.2, б).

Простой трубопровод постоянного сечения - student2.ru

Крутизна кривых потребного напора зависит от сопротивления трубопровода K и возрастает с увеличением длины трубопровода и уменьшением диаметра, а также с увеличением местных гидравлических сопротивлений.

Величина статического напора Нст положительна в том случае, когда жидкость движется вверх или в полость с повышенным давлением, и отрицательна при опускании жидкости или движении в полость с пониженным давлением. Точка пересечения кривой потребного напора с осью абсцисс (точка А) определяет расход при движении жидкости самотеком. Потребный напор в этом случае равен нулю.

26.Параллельное соединение.

Такое соединение показано на рис. 6.4, а. Трубопроводы 1, 2 и 3 расположены горизонтально.

Простой трубопровод постоянного сечения - student2.ru

Рис. 6.4. Параллельное соединение трубопроводов

Обозначим полные напоры в точках М и N соответственно HM и HN , расход в основной магистрали (т.е. до разветвления и после слияния) - через Q, а в параллельных трубопроводах через Q1, Q2 и Q3; суммарные потери в этих трубопроводах через Σ1 , Σ2 и Σ3.

Очевидно, что расход жидкости в основной магистрали

Q = Q1 = Q2 = Q3

Выразим потери напора в каждом из трубопроводов через полные напоры в точках М и N :

Σh1 = HM - HN; Σh2 = HM - HN; Σh3 = HM - HN

Отсюда делаем вывод, что

Σh1 = Σh2 = Σh3

т.е. потери напора в параллельных трубопроводах равны между собой. Их можно выразить в общем виде через соответствующие расходы следующим образом

Σh1 = K1Q1m; Σh2 = K2Q2m; Σh3 = K3Q3m

где K и m - определяются в зависимости от режима течения.

Из двух последних уравнений вытекает следующее правило: для построения характеристики параллельного соединения нескольких трубопроводов следует сложить абсциссы (расходы) характеристик этих трубопроводов при одинаковых ординатах ( Σ h).

Следящий гидропривод.

Следящим называется регулируемый гидропривод, в котором скорость движения выходного звена изменяется по определенному закону в зависимости от задающего воздействия на звено управле­ния. Выходное звено — это обычно шток гидроцилиндра или вал гидромотора, а звено управления — устройство, на которое пода­ется управляющий сигнал.Следящий гидропривод приме­няют в тех случаях, когда непосредственное ручное управление той или иной машиной является для человека. Управление смещением зо­лотника и его обратная связь с люлькой могут быть электри­ческими. В этом случае работа насоса может регулироваться дистанционно и автоматически, например, по командам ЭВМ. Гидроприводы, в которых входным воздействием является электрический сигнал, преоб­разуемый в перемещение гидро­распределителя, называют элек­трогидравлическими. В них вы­ходное звено отслеживает из­менение электрического сигна­ла, поступающего на звено уп­равления. дроссели, имея нелинейные характеристики, позволяют при взаимодействии получить характеристики со взаимосвязью входных и выходных параметров близкой к линейной.

Наши рекомендации