Тема 3.2 Аппроксимация экспериментальных данных.
Аппроксимацией называется процесс подбора эмпирической формулы j(х) для установления из опыта функциональной зависимости y=f(x). Эмпирические формулы служат для аналитического представления опытных данных. Обычно задача аппроксимации разделяется на две части. Сначала устанавливают вид зависимости y=f(x), т.е. решают, является ли она линейной, квадратической, логарифмической и т.п. Обычно определение параметров при известном виде зависимости осуществляется по методу наименьших квадратов. При этом функция j(х) считается наилучшим приближением к f(x), если для нее сумма квадратов отклонений теоретических значений j(х) найденных по эмпирической формуле, от соответствующих опытных значений минимальна, т.е.
В Excel аппроксимация экспериментальных данных осуществляется путем построения их графика с последующим подбором подходящей аппроксимирующей функции (линии тренда). Возможны следующие варианты функций:
1. Линейная: y=ax+b. Обычно применяется в простейших случаях, когда экспериментальные данные убывают или возрастают с постоянной скоростью.
2. Полиномиальная: y=а0+ a1 x + a2 x2 +… an xn, (п£), аi– константы. Используется для описания экспериментальных данных, попеременно возрастающих и убывающих. Степень полинома определяется количеством экстремумов кривой. Так, например, полином второй степени может описать только один максимум или минимум, полином третьей степени – не более двух экстремумов.
3. Логарифмическая: , где а и b константы, ln – функция натурального логарифма. Функция применяется для описания экспериментальных данных, которые вначале быстро растут или убывают, а затем стабилизируются.
4. Степенная: y = bxa, где а и b – константы. Аппроксимация степенной функции используется для экспериментальных данных с постоянно увеличивающейся (убывающей) скоростью роста. Данные не должны иметь нулевых или отрицательных значений.
5. Экспоненциальная: y = bеaх, где а и b константы, е – основание натурального логарифма. Применятся для описания экспериментальных данных, которые быстро растут или убывают, а затем постепенно стабилизируется. Часто ее использование вытекает из теоретических соображений.
Степень близости аппроксимации экспериментальных данных выбранной функции оценивается коэффициентом детерминации (R2). Чем больше коэффициент детерминации (стремится к единице), тем лучше.
Для осуществления аппроксимации на диаграмме экспериментальных данных необходимо щелчком правой кнопки мыши вызвать контекстное меню и выбрать пункт Добавить линию тренда. В появившемся диалоговом окне Линия тренда, на вкладке Тип выбрать вид аппроксимирующей функции, на вкладке Параметры задаются дополнительные параметры, влияющие на отображение аппроксимирующей кривой, в частности можно установить флажки в поля Показывать уравнения на диаграмме и Поместить на диаграмму величину достоверности аппроксимации. Можно сделать прогноз о том, как будет вести себя исследуемая функция, для этого надо на вкладке Параметры указать количество периодов (от 0,5) для которых будет сделан прогноз.
Пример:Исследовать характер изменения с течением времени уровня производства некоторой продукции, и подобрать аппроксимирующую функцию, располагая следующими данными.
Год | |||||
Производство продукции | 17,1 | 18,0 | 18,9 | 19,7 | 19,7 |
Решение:
- Введите данные и постройте гистограмму зависимости производства продукции от года.
- Осуществите аппроксимацию полученной кривой. Для этого указатель мыши устанавливаем на одну из точек гистограммы и при помощи контекстного меню выбираем пункт Добавить линию тренда.
- В окне Линия тренда выберите тип линии тренда логарифмическая, на вкладке Параметры установить флажки в поля Показывать уравнения на диаграмме и Поместить на диаграмму величину достоверности аппроксимации.
- Постройте по исходным данным еще одну гистограмму и произведите те же действия, выбрав тип линии тренда Полиномиальный, степень 2, параметры те же.
- Сравните полученные уравнения линий тренда и выберите ту, которая лучше аппроксимирует исходные данные, объясните свое решение.
Самостоятельное задание.
- В средней школе было решено сравнить среднее число книг, прочитанных среднестатистическим восьмиклассником за год, с количеством правонарушений, совершенных подростками в микрорайоне в течение года. Проанализировали данные за 10 лет, получили следующую таблицу:
X | ||||||||||
Y |
X – среднее число книг, прочитанных за год , Y – количество правонарушений. Постройте функцию, которая наилучшим образом отображает зависимость количества правонарушений от числа книг, прочитанных за год, и запишите ее уравнение.
- Количество вложенных в производство средств и полученная в результате прибыль соотносятся следующим образом
Кол-во средств (х) | 1,6 | 2,0 | 2,5 | 3,0 | 4,0 | 7,0 |
Прибыль (y) | 8,5 | 9,0 | 11,0 | 13,0 | 22,0 | 70,0 |
Запишите аналитическую зависимость между x и y. Проанализируйте полученный ответ. Какова будет прибыль предприятия, если вложить 10,0 единиц средств?