Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом.

Лабораторная работа № 11-А

ИЗУЧЕНИЕ ЗАТУХАЮЩИХ И ВЫНУЖДЕННЫХ КОЛЕБАНИЙ

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru КРАТКАЯ ТЕОРИЯ.Совокупность связанных между собой тел, способных совершать колебания, называют колебательной системой. Рассмотрим простейшую колебательную систему - пружинный маятник (рис. 1). Он представляет собой груз массой Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru , подвешенный на упругой пружине. Будем считать, что масса пружины мала по сравнению с массой груза.

Если первоначальная длина пружины без груза - Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru , то при подвешивании груза она растягивается на величину D Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru , называемую статическим удлинением пружины. Когда маятник находится в состоянии равновесия, вес груза уравновешивается силой упругости пружины:

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru , (1),

что дает возможность определить жесткость пружины статическим методом.

Выведем груз из положения равновесия вниз на расстояние, равное X. Если при этом удлинение пружины не слишком велико и выполняется закон Гука, то результирующая сила, действующая на груз, находящийся в этом положении, будет равна:

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru

или с учетом соотношения (1):

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru . (2)

Знак минус указывает на то, что смещение и сила имеют противоположные направления.

Таким образом, результирующая сила при смещении груза из положения равновесия пропорциональна величине смещения и всегда направлена к положению равновесия. Так как эта сила стремится возвратить груз в положение равновесия, то ее называют возвращающей силой, коэффициент пропорциональности в (2),соответствующий величине силы, вызывающей единичную деформацию, жесткостью пружины. В пружинном маятнике роль возвращающей силы играет сила упругости. Отметим, что если силы, действующие в системе, по своей природе не являются упругими, но описываются уравнением (2), то они называются квазиупругими силами. Колебания, совершающиеся под действием только упругих или квазиупругих сил, называются собственными колебаниями.

Если груз, выведенный из положения равновесия на небольшое расстояние Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru , отпустить, то он будет совершать колебания в вертикальной плоскости. За малый промежуток времени (порядка нескольких секунд) работой сил сопротивления можно пренебречь, поэтому можно считать, что маятник совершает собственные колебания с периодом Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru.Если Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru полных колебаний совершается за время Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru , то время одного колебания:

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru .

Движение груза описывается, согласно второму закону Ньютона, следующим соотношением:

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru (3)

или

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru , (4)

Где

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru (5)

- собственная угловая (циклическая) частотасистемы – число колебаний за 2p секунд. Уравнение (4) - дифференциальное уравнение гармонических колебаний, решение которого представляется гармонической функцией:

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru , (6)

определяющей смещение Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru от положения равновесия как функцию времени. Здесь Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru - амплитуда колебаний или модуль максимального отклонения тела от положения равновесия. Так как:

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru ,

то из (5)следует:

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru ,

тогда жесткость пружины динамическим методом определяется по формуле:

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru . (7)

Если время, в течение которого совершаются колебания, велико по сравнению с периодом колебаний, то на движение колеблющегося груза существенным образом будет сказываться действие сопротивления воздуха, вследствие чего амплитуда колебаний будет со временем уменьшаться. Такие колебания называются затухающими.

При сравнительно малых скоростях можно считать сопротивление прямо пропорциональным скорости движения колеблющегося тела:

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru .

Знак «минус» указывает на то, что сила сопротивления (трения) направлена против скорости смещения, а величина Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru представляет собой коэффициент сопротивления движению маятника. Поэтому для затухающих колебаний уравнение движения груза будет иметь вид:

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru . (8)

Это уравнение приводится к виду:

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru , (9)

где d - коэффициент затухания, равный

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru (9’).

Уравнение (9) есть дифференциальное уравнение затухающих колебаний. Решение уравнения (9) при условии, что коэффициент затухания меньше собственной циклической частоты ( Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru ), представляется функцией:

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru . (10)

Здесь Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru - круговая частота свободных (затухающих) колебаний, равная:

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru . (11)

Таким образом, частота затухающих колебаний меньше частоты собственных колебаний системы.

Согласно (10) амплитуда колебаний убывает по экспоненциальному закону:

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru , (12)

где Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru - начальная амплитуда затухающих колебаний, Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru - амплитуда колебаний в момент времени Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru .

Отношение двух амплитуд, отстоящих на период, называют декрементом затухания:

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru .

Натуральный логарифм отношения этих амплитуд называют логарифмическим декрементом затухания:

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru . (13)

Для повышения точности измерения логарифмического декремента затухания обычно измеряют амплитуды колебаний, следующих друг за другом через Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru колебаний. В этом случае время колебаний Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru и

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru ,

вследствие чего:

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru ,

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru . (14)

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА. Экспериментальная установка состоит из пружинного маятника и шкалы, по которой отсчитывается амплитуда колебания груза (рис. 1). Для исключения параллакса шкала снабжена зеркалом. Глаз при отсчете положения груза следует располагать так, чтобы изображение указателя положения груза в зеркале совпадало с самим указателем.

ЗАДАНИЕ

1. Для определения жесткости пружины статическим методом следует измерить по шкале удлинение пружины при подвешивании к ней добавочного груза известной массы. Расчет жесткости производится согласно формуле:

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом. - student2.ru .

Сняв добавочный груз, следует оттянуть основной груз на 3-4 см вниз и, измерив время 10 полных колебаний, определить период колебаний маятника. Измерения повторить не менее трех раз и результат их усреднить.

Воспользовавшись соотношением (7), рассчитать жесткость пружины динамическим методом и сравнить ее значение с полученным ранее статическим методом.

4. Оттянуть груз вниз от положения равновесия и определить начальную амплитуду колебаний А0. Отпуская груз, одновременно включить секундомер. Измерить промежуток времени, в течение которого совершится 150 полных колебаний, а также амплитуду последнего колебания Аn. Рассчитать логарифмический декремент затухания согласно формуле (14) и коэффициент затухания согласно формуле (13).

5. Зная массу колеблющегося груза и коэффициент затухания, рассчитать коэффициент сопротивления, используя формулу (9’).

Наши рекомендации