Проверка значимости уравнения линейной множественной регрессии с помощью критериев Фишера и Стьюдента
Значимость уравнения множественной регрессии в целом, так же как и в парной регрессии, оценивается с помощью -критерия Фишера:
(4.30)
где – факторная сумма квадратов на одну степень свободы; – остаточная сумма квадратов на одну степень свободы; – коэффициент (индекс) множественной детерминации; m – число оцениваемых параметров уравнения регрессии; n – число наблюдений.
Оценивается значимость не только уравнения в целом, но и фактора, дополнительно включенного в регрессионную модель. Необходимость такой оценки связана с тем, что не каждый фактор, вошедший в модель, может существенно увеличивать долю объясненной вариации результативного признака. Кроме того, при наличии в модели нескольких факторов они могут вводиться в модель в разной последовательности. Ввиду корреляции между факторами значимость одного и того же фактора может быть разной в зависимости от последовательности его введения в модель. Мерой для оценки включения фактора в модель служит частный -критерий, т.е. .
Частный -критерий построен на сравнении прироста факторной дисперсии, обусловленного влиянием дополнительно включенного фактора, с остаточной дисперсией на одну степень свободы по регрессионной модели в целом. В общем виде для фактора частный -критерий определится как
(4.31)
где – коэффициент множественной детерминации для модели с полным набором факторов, – тот же показатель, но без включения в модель фактора , n – число наблюдений, m – число параметров в модели.
Фактическое значение частного -критерия сравнивается с табличным при уровне значимости α и числе степеней свободы: 1 и . Если фактическое значение превышает , то дополнительное включение фактора в модель статистически оправданно и коэффициент чистой регрессии при факторе статистически значим. Если же фактическое значение меньше табличного, то дополнительное включение в модель фактора не увеличивает существенно долю объясненной вариации признака , следовательно, нецелесообразно его включение в модель; коэффициент регрессии при данном факторе в этом случае статистически незначим.
Для двухфакторного уравнения частные -критерии имеют вид:
(4.32)
С помощью частного -критерия можно проверить значимость всех коэффициентов регрессии в предположении, что каждый соответствующий фактор вводился в уравнение множественной регрессии последним.
Частный -критерий оценивает значимость коэффициентов чистой регрессии. Зная величину , можно определить и -критерий для коэффициента регрессии при -м факторе, , а именно:
. (4.33)
Оценка значимости коэффициентов чистой регрессии по -критерию Стьюдента может быть проведена и без расчета частных -критериев. В этом случае, как и в парной регрессии, для каждого фактора используется формула:
, (4.34)
где – коэффициент чистой регрессии при факторе , – среднее квадратическое (стандартное) отклонение коэффициента регрессии .
Для уравнения множественной регрессии среднее квадратическое отклонение коэффициента регрессии может быть определено по следующей формуле:
, (4.35)
где – среднее квадратическое отклонение для признака , – среднее квадратическое отклонение для признака , – коэффициент детерминации для уравнения множественной регрессии, – коэффициент детерминации для зависимости фактора со всеми другими факторами уравнения множественной регрессии; – число степеней свободы для остаточной суммы квадратов отклонений.
Как видим, чтобы воспользоваться данной формулой, необходимы матрица межфакторной корреляции и расчет по ней соответствующих коэффициентов детерминации . Так, для уравнения оценка значимости коэффициентов регрессии , , предполагает расчет трех межфакторных коэффициентов детерминации: , , .
Взаимосвязь показателей частного коэффициента корреляции, частного -критерия и -критерия Стьюдента для коэффициентов чистой регрессии может использоваться в процедуре отбора факторов.