Производная функций. Информационная карта с алгоритмом решения

ПРОЕКТИРОВАНИЕ УЧЕБНОГО ЗАНЯТИЯ

ПЛАН-КОНСПЕКТ УЧЕБНОГО ЗАНЯТИЯ

Дата 20-24.12.2016
Тема Практическое занятие №15 «Правила дифференцирования»
Преподаватель Лузан Л.О.
Профессия / Специальность  
Группа 1503, 1504, 1503к, 1504к
Место проведения корпус №5
Тип занятия Практическое
 

Задачи учебного занятия

Методические: - активизация учебно-познавательной деятельности обучающихся через опрос по правилам дифференцирования и выполнение самостоятельной работы - закрепление полученных знаний; - актуализация (ОК1, ОК2, ОК3);
Образовательные: - формирование системы знаний опроизводной - формирование и закрепление навыка вычисления первой производной, составления уравнения касательной - изучить правила дифференцирования второй производной, физический смысл второй производной; - проверить навыки учащихся по нахождению производной;
Воспитательные: - формирование познавательных мотивов - формирование сознательного отношения к обучению, учебной деятельности;
Развивающие: - развитие личностных качеств: внимательность, инициативность; - развитие памяти, развитие логического мышления;

Методическое обеспечение учебного занятия:рабочая программа (КТП), конспект учебного занятия, раздаточный материал, литература

Периферийное оборудование:компьютер, панель

Структура и содержание учебного занятия

Этапы учебного занятия Хронометраж учебного занятия Деятельность преподавателя Деятельность обучающихся
Организационный 5 минут Подготовка к занятию, определение готовности к совместной деятельности, проверка наличия тетрадей и ручек. Цель занятия: актуализировать теоретические знания по нахождению первой производной, полученные на предыдущем уроке. Изучить правила дифференцирования второй производной, а также осуществить проверку знаний обучающихся (самостоятельная работа). Критерии оценивания по формулам:за каждый правильный ответ начисляется 1 балл, за неверный ответ или отсутствие ответа выставляется 0баллов. Шкала перевода баллов в отметку:
Баллы 0-1
Отметка
Проверка присутствующих, контроль  
Повторение и закрепление материала 20 минут     1. Повторение пройденного материала через письменный опрос по формулам дифференцирования. (Приложение №1) (5 мин) 2. Нахождение производных работа у доски Приложение №1 (10 мин) 3. Составление уравнений касательной Приложение №1 (5 мин) Восприятие и осмысление пройденного материала, актуализация знаний, конспектирование в тетрадях
Изучение нового материала 15 минут Правила дифференцирования второй производной, физический смысл второй производной. Производные второго и высшего порядка. Пусть мы нашли для функции y=f(x) ее производную y ¢= f ¢(x). Производная от этой производной называется производной второго порядка функции f(x), или второй производной, и обозначается: Производная функций. Информационная карта с алгоритмом решения - student2.ru . Аналогично определяются и обозначаются: производная третьего порядка - Производная функций. Информационная карта с алгоритмом решения - student2.ru , и вообще производная n-го порядка - Производная функций. Информационная карта с алгоритмом решения - student2.ru . Теоретическая часть (устный опрос). 1. В чём заключается механический смысл первой производной ? Ответ. Производная функции у = f(х), в точке х0, выражает скорость изменения функции в этой точке. 2. Если функция задана законом прямолинейного движения S = S(t), то S' (t) –? Ответ.Скорость движения в момент времени t - это производная по перемещению S' (t) = v(t)   Разберем что есть вторая производная от закона движения? Ответ. Скорость изменения скорости этого движения, т.е. ускорение а(t) = v' (t) = S' ' (t). С физической точки зрения дифференцирование – определение скорости изменения переменной величины. Производная, таким образом, играет роль скорости изменения зависимой переменной y по отношению к изменению независимой переменной х.  
Самостоятельная практическая деятельность     30 минут     Самостоятельная работа (8 вариантов) (цель: текущий контроль над усвоением знаний, еще раз закрепить знания по правилам дифференцирования, выявить пробелы). (Приложение №1, Самостоятельная работа) 1. Используя основные формулы дифференцирования, решают самостоятельную работу (30 мин.) (1-6 задание) 2. Составляют уравнение касательной (7 задание) 3. Сдают преподавателю на проверку
Проверка правильности выполнения самостоятельной работы остается за преподавателем.
Подведение итогов 5 минут   Теоретические выводы: в результате выполненной работы обучающиеся используют теоретические знания по основным операциям над векторами.
Заключительный 5 минут Подведение итогов учебного занятия. Итоги по выполнению самостоятельной работы озвучиваются на следующем занятии.
¡ Домашнее задание. Тело массой 2 кг движется прямолинейно по закону x(t)=t2+t+1. Найти действующую на тело силу F, кинетическую энергию тела через 2с после начала движения. ¡ Производная функций. Информационная карта с алгоритмом решения - student2.ru Найти вторую производную функции:

1. Таблица производных:

f(x) c, где с=const x xn Производная функций. Информационная карта с алгоритмом решения - student2.ru Производная функций. Информационная карта с алгоритмом решения - student2.ru sinx cosx tgx ctgx ax ex lnx Производная функций. Информационная карта с алгоритмом решения - student2.ru
f / (x) nxn-1 Производная функций. Информационная карта с алгоритмом решения - student2.ru Производная функций. Информационная карта с алгоритмом решения - student2.ru cosx -sinx Производная функций. Информационная карта с алгоритмом решения - student2.ru Производная функций. Информационная карта с алгоритмом решения - student2.ru axlna ex Производная функций. Информационная карта с алгоритмом решения - student2.ru Производная функций. Информационная карта с алгоритмом решения - student2.ru

2. Правила дифференцирования:

(ku)/ = ku/

(u+v)/ = u/ + v/

(uv)/ = u/v + uv/

Практическая часть

1. Используя таблицу производных, правила дифференцирования суммы, произведения и частного элементарных функций, найти производные следующих функций:

2.

Производная функций. Информационная карта с алгоритмом решения - student2.ru 1.1 Производная функций. Информационная карта с алгоритмом решения - student2.ru 1.4 Производная функций. Информационная карта с алгоритмом решения - student2.ru 1.7
Производная функций. Информационная карта с алгоритмом решения - student2.ru 1.2 Производная функций. Информационная карта с алгоритмом решения - student2.ru 1.5 Производная функций. Информационная карта с алгоритмом решения - student2.ru 1.8
1.3 у = Производная функций. Информационная карта с алгоритмом решения - student2.ru Производная функций. Информационная карта с алгоритмом решения - student2.ru 1.6 1.9 у = Производная функций. Информационная карта с алгоритмом решения - student2.ru

Теоретическая часть.

1. В чём заключается механический смысл первой производной ?

Ответ. Производная функции у = f(х), в точке х0, выражает скорость изменения функции в этой точке.

2. Если функция задана законом прямолинейного движения S = S(t), то S' (t) –?

Ответ.Скорость движения в момент времени t - это производная по перемещению S' (t) = v(t)

3. Что есть вторая производная от закона движения?

Ответ. Скорость изменения скорости этого движения, т.е. ускорение а(t) = v' (t) = S' ' (t).

С физической точки зрения дифференцирование – определение скорости изменения переменной величины. Производная, таким образом, играет роль скорости изменения зависимой переменной y по отношению к изменению независимой переменной х.

Выясняем формулы из физики, где используется производная.

ü υ(t) = х'(t) – скорость.

ü a(t) = υ'(t) – ускорение.

ü I(t) = q'(t) – сила тока.

ü с(t) = Q'(t) – теплоемкость.

ü d(l) = m'(l) – линейная плотность.

ü K(t) = l'(t) – коэффициент линейного расширения.

ü ω(t) = φ'(t) – угловая скорость.

ü e(t) = ω'(t) – угловое ускорение.

Чтобы охарактеризовать скорость совершения работы, вводят понятие мощности.

ü N(t) = A'(t) – мощность.

ü F(x)= A'(x) – Сила есть производная работы по перемещению.

ü Е = Ф'(t) – ЭДС индукции F = р'(t) – 2 закон Ньютона.

Примеры применения производной в физике
Задача Решение
Тело массой 4 кг движется прямолинейно по закону x(t)=t2+t+1. 1. Какова кинетическая энергия тела в - момент времени 3 сек. после начала движения тела? - конце движения тела? 2. Какова сила, действующая на тело? 1. Wк = (mv2)/2 x ' (t) = v (t) = 2t+1, v (3) = 7, a(t)= v' (t) = 2, Wк = (4·72)/2=98 2. F = ma, a(t) = v' (t) = x' ' (t), x ' (t) = v (t) = 2t+1, a(t)= v' (t) = 2, F = ma = 4·2 = 8 H.
Угол поворота тела вокруг оси изменяется по закону φ(t)=0,1t2-0,5t+0,2. Найти угловую скорость вращения тела в момент времени t=20с. ω(t) = φ'(t) φ'(t) = 0,2t-0,5 ω(t) = 0,2t-0,5 ω(20) = 3,5
Для любой точки С стержня АВ длиной 10 см, масса куска стержня АС определяется по формуле m(l)=3l2+5l. Найти линейную плотность стержня в середине отрезка АВ, в конце отрезка. d(l) = m'(l) m'(l) = 6l+5 d(l) = 6l+5 d(5) = 6·5+5=35 – в середине отрезка d(10) = 6·10+5=65 – в конце отрезка
Количество электричества, протекающее через проводник, начиная с момента времени t=0, задаётся формулой q=3t2-3t+4. Найти силу тока в конце 6-й секунды. I(t) = q'(t) q'(t) = 6t-3 I(t) = 6t-3 I(6) = 6·6-3=33

Практическая часть.

1.Найти необходимые величины.

1.1 S(t)=2t4+3t2-t+√t3 v(t), a(t)-? 1.6 S(t)=12t 2-(2/3)t3 v(t), a(t)-? 1.11 S(t)=21t+2t2-(1/3)t3 v(t), a(t)-?
1.2 S(t)=5sin(3t+1), v(t)-? 1.7 S(t)=6cos(0,5t-4), v(t)-? 1.12 S(t)=0,5sin(4t+2), v(t)-?
1.3 x(t)= - 4t2+2t+2, v(1)-? 1.8 x(t)= √t+2t2 - 3t+2, v(25)-? 1.13 x(t)=(-1/3)t3+2t2+5t, v(2)-?
1.4 x(t)=t3-4t2, a(5) -? 1.9 x(t)=0,25t4-2t2, a(1) -? 1.14 x(t)=t5+3t2-1, a(2) -?
1.5 x(t)=(-1/6)t3 +3t2 – 5, найти t, когда a(t)=0 1.10 x(t)=2t3+t-1, найти t, когда a(t)=2   1.15 x(t)= (-1/3)t3+2t2+5t, найти t, когда v(t)=0

2. Решить задачу.

2.1 Найти силу F, действующую на материальную точку с массой m, движущуюся прямолинейно по закону s(t) = 2t3-t2, при t=2.

2.2 Тело массой 2 кг движется прямолинейно по закону x(t)=t2+t+1. Найти действующую на тело силу F, кинетическую энергию тела через после начала движения.

2.3 Маховик, задерживаемый тормозом, за время t поворачивается на угол φ(t)=4t-0,3t2. Найти угловую скорость ω(t) вращения маховика в момент времени 2 с.

2.4 Точка движется по закону x(t)=√t. Найти её скорость в момент времени .

2.5 Найти скорость тела, движущегося по закону s(t)=3t+5.

2.6 Тело движется прямолинейно по закону s(t)=2t2-t+4. Найти скорость тела в моменты времени t1=0, t2=2, t3=5 с.

2.7 Найти скорость движения точки в момент времени t=5с, если закон движения задан формулой s(t)=3t2-2t+5.

2.8 Тело движется прямолинейно по закону s(t)=1-2t+t3. Найти скорость и ускорение в момент времени t=3с.

2.9 Найти скорость и ускорение движения тела в момент времени t=2с, если закон движения задан формулой s=4t2-3.

2.10 Когда скорость точки, движущейся прямолинейно по закону s(t)=t2-4t+5, равна 0?

2.11 Сила тока изменяется по закону I=0,4t2 . Найти скорость изменения силы тока в конце 8-й секунды.

2.12 Изменение силы тока в зависимости от времени задано уравнением I = 2t2-5t. Найти скорость изменения силы тока в конце 10-й секунды.

2.13 Количество теплоты Q, получаемое некоторым веществом при нагревании определяется по формуле Q=10t+0,5t2. Найти теплоёмкость этого вещества при 20 К.

Производная функций. Информационная карта с алгоритмом решения

Вариант №1

№ п/п Формула производной Задания для самостоятельного решения
Если у=С, где С-const (постоянная), то y'=(C)'=0 Пример:1) у=6 (т.е. С=6), тогда y'=(6)'=0 2) у=-0,81 (т.е. С=0,81), тогда y'=(0,81)'=0 1) у=31 2) у=-1/3
Если у=сх, где С-const (постоянная), то y'=(сх)'=с Пример:1) у=5х (т.е. С=5), тогда y'=(5х)'=5 2) у=-3х (т.е. С=-3), тогда y'=(-3х)'=-3 3) у=2х/5 (т.е. С=2/5), тогда y'=(2х/5)'=2/5 1) у=17х 2) у=-0,2х 3)у=х/3
Если у=х Производная функций. Информационная карта с алгоритмом решения - student2.ru (где n, где n Производная функций. Информационная карта с алгоритмом решения - student2.ru N, n≥2), то y'= nх Производная функций. Информационная карта с алгоритмом решения - student2.ru . Пример: 1) Производная функций. Информационная карта с алгоритмом решения - student2.ru (т.е. n=10), тогдаy' Производная функций. Информационная карта с алгоритмом решения - student2.ru 2)Производная функций. Информационная карта с алгоритмом решения - student2.ru (т.е. n=2), тогдаy' Производная функций. Информационная карта с алгоритмом решения - student2.ru 1) у= Производная функций. Информационная карта с алгоритмом решения - student2.ru 2) у= Производная функций. Информационная карта с алгоритмом решения - student2.ru 3) у=- Производная функций. Информационная карта с алгоритмом решения - student2.ru  
Если у=cх Производная функций. Информационная карта с алгоритмом решения - student2.ru (где n, где n Производная функций. Информационная карта с алгоритмом решения - student2.ru N, n≥2, С-const ), то y'= с·nх Производная функций. Информационная карта с алгоритмом решения - student2.ru Пример: 1)Производная функций. Информационная карта с алгоритмом решения - student2.ru (т.е. n=10, с=3), тогдаy' Производная функций. Информационная карта с алгоритмом решения - student2.ru 2)Производная функций. Информационная карта с алгоритмом решения - student2.ru (т.е. n=2, с=- Производная функций. Информационная карта с алгоритмом решения - student2.ru ), тогдаy' Производная функций. Информационная карта с алгоритмом решения - student2.ru 1) у= Производная функций. Информационная карта с алгоритмом решения - student2.ru 2) у= Производная функций. Информационная карта с алгоритмом решения - student2.ru 3) у=-0,5 Производная функций. Информационная карта с алгоритмом решения - student2.ru  
Если y'=(u+v)', где u, v –функции, то y'=u'+v' Пример: 1)Производная функций. Информационная карта с алгоритмом решения - student2.ru (т.е. u= Производная функций. Информационная карта с алгоритмом решения - student2.ru , v=3), тогдаy' Производная функций. Информационная карта с алгоритмом решения - student2.ru 2)Производная функций. Информационная карта с алгоритмом решения - student2.ru (т.е. u=6x, v=3), тогдаy'= Производная функций. Информационная карта с алгоритмом решения - student2.ru 1) y=1-2x 2) y=13x Производная функций. Информационная карта с алгоритмом решения - student2.ru 3) y=5x Производная функций. Информационная карта с алгоритмом решения - student2.ru  
Если y=u·v, где u, v –функции, то y'=u'v+uv' Пример: 1)Производная функций. Информационная карта с алгоритмом решения - student2.ru (т.е. u= Производная функций. Информационная карта с алгоритмом решения - student2.ru , v= Производная функций. Информационная карта с алгоритмом решения - student2.ru ), тогда у'=(6х-3)'(2-х)+(6х-3)(2-х)'=6(2-х)+(6х-3)(-1)=12-6х-6х+3=-12х+15 2) у=3х Производная функций. Информационная карта с алгоритмом решения - student2.ru (х+5) (т.е. u=3x Производная функций. Информационная карта с алгоритмом решения - student2.ru , v=x+5), тогда у'=(3x Производная функций. Информационная карта с алгоритмом решения - student2.ru )'(х+5)+ 3x Производная функций. Информационная карта с алгоритмом решения - student2.ru (х+5)'=3·3х Производная функций. Информационная карта с алгоритмом решения - student2.ru (х+5) +3x Производная функций. Информационная карта с алгоритмом решения - student2.ru ·1=9x Производная функций. Информационная карта с алгоритмом решения - student2.ru (х+5)+ 3x Производная функций. Информационная карта с алгоритмом решения - student2.ru =9x Производная функций. Информационная карта с алгоритмом решения - student2.ru +45x Производная функций. Информационная карта с алгоритмом решения - student2.ru +3x Производная функций. Информационная карта с алгоритмом решения - student2.ru =12x Производная функций. Информационная карта с алгоритмом решения - student2.ru +45x Производная функций. Информационная карта с алгоритмом решения - student2.ru 1) у=(5-2х)(3х+1) 2) у= 7 Производная функций. Информационная карта с алгоритмом решения - student2.ru 3) y=(x Производная функций. Информационная карта с алгоритмом решения - student2.ru
Если y= Производная функций. Информационная карта с алгоритмом решения - student2.ru , где u, v –функции, v Производная функций. Информационная карта с алгоритмом решения - student2.ru , то Производная функций. Информационная карта с алгоритмом решения - student2.ru Пример: 1) Производная функций. Информационная карта с алгоритмом решения - student2.ru (т.е. u=х+2, v=х-1), тогда Производная функций. Информационная карта с алгоритмом решения - student2.ru 1) Производная функций. Информационная карта с алгоритмом решения - student2.ru
Уравнение касательной к графику функции y = f(x) в точке Производная функций. Информационная карта с алгоритмом решения - student2.ru имеет вид: Производная функций. Информационная карта с алгоритмом решения - student2.ru Алгоритм составления уравнения касательной к графику функции y = f(x)1. Обозначить буквой Производная функций. Информационная карта с алгоритмом решения - student2.ru абсциссу точки касания. 2. Найти f( Производная функций. Информационная карта с алгоритмом решения - student2.ru ). 3. Найти f '(x) и f '( Производная функций. Информационная карта с алгоритмом решения - student2.ru ). 4. Подставить найденные числа a, f(x), f '( Производная функций. Информационная карта с алгоритмом решения - student2.ru ) в общее уравнение касательной y - f( Производная функций. Информационная карта с алгоритмом решения - student2.ru ) = f '(x)(x – Производная функций. Информационная карта с алгоритмом решения - student2.ru ). Примеры составления уравнения касательной. Пример 1. Составьте уравнение касательной в точке Производная функций. Информационная карта с алгоритмом решения - student2.ru =3 к графику функции Производная функций. Информационная карта с алгоритмом решения - student2.ru Решение1. a = 3 – абсцисса точки касания. 2. f(3) = – 2. 3. f '(x) = x2 – 4, f '(3) = 5. y = – 2 + 5(x – 3), y = 5x – 17 – уравнение касательной.  

Задание для практической работы по теме «Вычисление производных функций»: Вычислить производные функций:

Вариант 1 Вариант 2 Вариант 3
1. y= =x3-15 2. y=-3x3+5х-8+4x2   3. y=(x3-1)(x+1)   4. y=(x3-2)(3x+1) 5. Производная функций. Информационная карта с алгоритмом решения - student2.ru 6. Производная функций. Информационная карта с алгоритмом решения - student2.ru 7. Y=3x3-x, Производная функций. Информационная карта с алгоритмом решения - student2.ru 1. y= =2x2-1 2. y= x3+6х-18+6x2   3. y=(x2+1)(x-5)   4. y=(x3+2)(7x-3) 5. Производная функций. Информационная карта с алгоритмом решения - student2.ru 6. Производная функций. Информационная карта с алгоритмом решения - student2.ru 7. Y=-x3+x, Производная функций. Информационная карта с алгоритмом решения - student2.ru 1. y= =8x2 2. y= x4+5х-1+2x2   3. y=(x2+2)(x+5)   4. y=(x3+2х)(x+15) 5. Производная функций. Информационная карта с алгоритмом решения - student2.ru 6. Производная функций. Информационная карта с алгоритмом решения - student2.ru 7. Y=-3x2+12x, Производная функций. Информационная карта с алгоритмом решения - student2.ru
Вариант 4 Вариант 5 Вариант 6
1. y= =3x3-5 2. y= 5x3+5-8х+x2   3. y=(x3-7)(2x+1)   4. y=(x3-6)(x+1) 5. Производная функций. Информационная карта с алгоритмом решения - student2.ru 6. Производная функций. Информационная карта с алгоритмом решения - student2.ru 7. Y=x2+5x+4, Производная функций. Информационная карта с алгоритмом решения - student2.ru 1. y= =4x2+5х 2. y=x4+х-10+5x2   3. y=(x2-5)(x+2)   4. y=(3x3+х)(x-5) 5. Производная функций. Информационная карта с алгоритмом решения - student2.ru 6. Производная функций. Информационная карта с алгоритмом решения - student2.ru 7. Y=-x2+2x+15, Производная функций. Информационная карта с алгоритмом решения - student2.ru 1. y= =2x3-х   2. y= 4x3+5х-8+2x2   3. y=(x3-1)( x+2)   4. y=(x3-2)(2x+1) 5. Производная функций. Информационная карта с алгоритмом решения - student2.ru 6. Производная функций. Информационная карта с алгоритмом решения - student2.ru 7. Y=1/3x3-9, Производная функций. Информационная карта с алгоритмом решения - student2.ru
Вариант 7 Вариант 8 Вариант 9
1. Производная функций. Информационная карта с алгоритмом решения - student2.ru   2. у=15x3+6-2х+x2   3. y=-8x2(х+1)   4. y=4x(1-2x-2x2)   5. y=sin x/ln x 6. Производная функций. Информационная карта с алгоритмом решения - student2.ru Производная функций. Информационная карта с алгоритмом решения - student2.ru 7. Y=3x3-x, Производная функций. Информационная карта с алгоритмом решения - student2.ru 1. Y=3x -5   2. у=2x4+5х-10+5x2   3. y=-2x(5x+3)   4 . y=(3x-5)(5-x2) 5. Производная функций. Информационная карта с алгоритмом решения - student2.ru 6. y=cos x·2x   7. Y=-x3+x, Производная функций. Информационная карта с алгоритмом решения - student2.ru 1. y= =-3x3 2. y= 3x3+15х-8+x2   3. y=(x3-1)(x+1)   4. y=5x ·tg x 5. Производная функций. Информационная карта с алгоритмом решения - student2.ru 6. Производная функций. Информационная карта с алгоритмом решения - student2.ru 7. Y=-3x2+12x, Производная функций. Информационная карта с алгоритмом решения - student2.ru

Наши рекомендации