Министерство образования саратовской области 6 страница
Определить усилия в стержнях АС и АВ, возникающие от силы F, приложенной к узлу А, аналитическим и графическим методами (рис.4).
Дано: F = 40кН.
F
А 90о
В
45оС
Рис.4
Определить: усилия NАВ и NАС.
Решение:
F F
B 1 А 90о N1 450 90о
2 А
45о С N2
Рис.5 Рис.6
1. Строим схему, соблюдая все заданные углы (без соблюдения масштаба сил, рис.5). Рассматриваем равновесие точки А, в которой сходятся все стержни и внешние силы.
2. Отбрасываем связи АВ и АС, заменяя их усилиями в стержнях N1 и N2. Направление усилий примем от узла А, предполагая стержни растянутыми. Выполним на отдельном чертеже схему действия сил в точке А (рис.6).
3. Выберем систему координат таким образом, чтобы одна из осей совпала с неизвестным усилием. Составляем уравнения равновесия плоской системы сходящихся сил:
(1)
(2)
Из уравнения ( ) находим усилие :
Найденное значение подставляем в уравнение ( ) и находим из него значение :
Окончательно получаем:
N1 =
N2 =
II. Графический метод.
1. Так как узел А находится в равновесии, то многоугольник из заданной и двух искомых сил должен быть замкнутым. Выбираем масштаб сил m = 10кН/см, тогда сила F будут откладываться отрезком:
Из произвольной т.О откладываем отрезок, соответствующий величине и направлению силы
Силы N1 и N2 неизвестны, но известны их направления. Поэтому, зная, что силовой многоугольник должен быть замкнут (условие равновесия сходящихся сил), из начала отрезка F проводим прямую, параллельную вектору , а из конца отрезка F проводим прямую, параллельную вектору . Точка их пересечения является вершиной силового многоугольника (рис 7). Стрелки у искомых векторов ставим так, чтобы они шли в одном направлении со стрелками заданных векторов. Получим замкнутый силовой многоугольник.
Рис.7
N1 = см; N2 = см.
Измерив отрезки и, умножая их на масштаб, получим:
N1= · 10 = кН;
N2 = · 10 = кН.
Остается выяснить, растянуты или сжаты стержни NАВ и NАС. Для этого нужно сравнить их направление в многоугольнике сил с направлениями, что мы предположили в начале. Если направления совпадают, то стержень растянут, если направления не совпадают, то стержень сжат.
Окончательно получим:
N1= кН,
N2 = кН.
Ответ:
Аналитическое решение: N1= кН
N2 = кН.
Графическое решение: N1 = кН
N2 = кН.
ВАРИАНТ №22
Задача №1.
Определить равнодействующую сходящихся сил аналитическим и графическим методами (рис 1).
y F1 Дано:
F1 = 85 кН, F2 = 95 кН,
F3 = 105кН, α1 = 78 о,
α1 F2 x α2 = 47 о.
α2 Определить: R.
F3
Рис.1
Решение.
1. Аналитический метод.
Сначала надо определить проекции заданных сил на оси координат, после чего легко найти проекцию равнодействующей силы на эти оси.
Величину равнодействующей найдем по формуле
Строим схему с соблюдением заданных углов α1 и α2 (без соблюдения масштаба сил, рис 2).
y
x
Рис.2
Для вычисления проекций сил сначала определяем знак проекции, а затем ее абсолютную величину. Проекция положительна, если угол между положительным направлением оси и силой меньше 900 (сила и ось направлены в одну сторону); в противном случае проекция отрицательна. Чтобы получить величину проекции, надо умножить величину силы на косинус угла между силой и ее проекцией (т.е. всегда берется косинус острого угла).
Проекция равнодействующей силы:
ее величина
2.Графический метод.
Выберем масштаб сил: m = 10кН/см, тогда силы F1, F2, F3 будут откладываться отрезками:
Рис.3
R = см
R = · m = ·10 = кН.
Задача №2.
Определить усилия в стержнях АС и АВ, возникающие от силы F, приложенной к узлу А, аналитическим и графическим методами (рис.4).
Дано: F = 50 кН.
А В
90о
F
С 45о
Рис.4
Определить: усилия NАВ и NАС.
Решение:
А 2 В А N2
90o
1F 45o
С 45о N1 F
Рис.5 Рис.6
1. Строим схему, соблюдая все заданные углы (без соблюдения масштаба сил, рис.5). Рассматриваем равновесие точки А, в которой сходятся все стержни и внешние силы.
2. Отбрасываем связи АВ и АС, заменяя их усилиями в стержнях N1 и N2. Направление усилий примем от узла А, предполагая стержни растянутыми. Выполним на отдельном чертеже схему действия сил в точке А (рис.6).
3. Выберем систему координат таким образом, чтобы одна из осей совпала с неизвестным усилием. Составляем уравнения равновесия плоской системы сходящихся сил:
(1)
(2)
Из уравнения ( ) находим усилие :
Найденное значение подставляем в уравнение ( ) и находим из него значение :
Окончательно получаем:
N1 =
N2 =
II. Графический метод.
1. Так как узел А находится в равновесии, то многоугольник из заданной и двух искомых сил должен быть замкнутым. Выбираем масштаб сил m = 10кН/см, тогда сила F будут откладываться отрезком:
Из произвольной т.О откладываем отрезок, соответствующий величине и направлению силы
Силы N1 и N2 неизвестны, но известны их направления. Поэтому, зная, что силовой многоугольник должен быть замкнут (условие равновесия сходящихся сил), из начала отрезка F проводим прямую, параллельную вектору , а из конца отрезка F проводим прямую, параллельную вектору . Точка их пересечения является вершиной силового многоугольника (рис 7). Стрелки у искомых векторов ставим так, чтобы они шли в одном направлении со стрелками заданных векторов. Получим замкнутый силовой многоугольник.
Рис.7
N1 = см; N2 = см.
Измерив отрезки и, умножая их на масштаб, получим:
N1= · 10 = кН;
N2 = · 10 = кН.
Остается выяснить, растянуты или сжаты стержни N1 и N1. Для этого нужно сравнить их направление в многоугольнике сил с направлениями, что мы предположили в начале. Если направления совпадают, то стержень растянут, если направления не совпадают, то стержень сжат.
Окончательно получим:
N1 = кН,
N2 = кН.
Ответ:
Аналитическое решение: N1= кН
N2 = кН.
Графическое решение: N1= кН
N2 = кН.
ВАРИАНТ №23
Задача №1.
Определить равнодействующую сходящихся сил аналитическим и графическим методами (рис 1).
y F1 Дано:
F1 = 105 кН, F2 = 85 кН,
F3 = 95 кН, α1 = 47 о,
α1 F2 x α2 = 7 о.
α2 Определить: R.
F3
Рис.1
Решение.
1. Аналитический метод.
Сначала надо определить проекции заданных сил на оси координат, после чего легко найти проекцию равнодействующей силы на эти оси.
Величину равнодействующей найдем по формуле
Строим схему с соблюдением заданных углов α1 и α2 (без соблюдения масштаба сил, рис 2).
y
x
Рис.2
Для вычисления проекций сил сначала определяем знак проекции, а затем ее абсолютную величину. Проекция положительна, если угол между положительным направлением оси и силой меньше 900 (сила и ось направлены в одну сторону); в противном случае проекция отрицательна. Чтобы получить величину проекции, надо умножить величину силы на косинус угла между силой и ее проекцией (т.е. всегда берется косинус острого угла).
Проекция равнодействующей силы:
ее величина
2.Графический метод.
Выберем масштаб сил: m = 10кН/см, тогда силы F1, F2, F3 будут откладываться отрезками:
Рис.3
R = см
R = · m = ·10 = кН.
Задача №2.
Определить усилия в стержнях АС и АВ, возникающие от силы F, приложенной к узлу А, аналитическим и графическим методами (рис.4).
Дано: F = 60 кН.
А В
90о
F
С 45о
Рис.4
Определить: усилия NАВ и NАС.
Решение:
А 2 В А N2
90o
1F 45o
С 45о N1 F
Рис.5 Рис.6
1. Строим схему, соблюдая все заданные углы (без соблюдения масштаба сил, рис.5). Рассматриваем равновесие точки А, в которой сходятся все стержни и внешние силы.
2. Отбрасываем связи АВ и АС, заменяя их усилиями в стержнях N1 и N2. Направление усилий примем от узла А, предполагая стержни растянутыми. Выполним на отдельном чертеже схему действия сил в точке А (рис.6).
3. Выберем систему координат таким образом, чтобы одна из осей совпала с неизвестным усилием. Составляем уравнения равновесия плоской системы сходящихся сил:
(1)
(2)
Из уравнения ( ) находим усилие :
Найденное значение подставляем в уравнение ( ) и находим из него значение :
Окончательно получаем:
N1 =
N2 =
II. Графический метод.
1. Так как узел А находится в равновесии, то многоугольник из заданной и двух искомых сил должен быть замкнутым. Выбираем масштаб сил m = 10кН/см, тогда сила F будут откладываться отрезком:
Из произвольной т.О откладываем отрезок, соответствующий величине и направлению силы
Силы N1 и N2 неизвестны, но известны их направления. Поэтому, зная, что силовой многоугольник должен быть замкнут (условие равновесия сходящихся сил), из начала отрезка F проводим прямую, параллельную вектору , а из конца отрезка F проводим прямую, параллельную вектору . Точка их пересечения является вершиной силового многоугольника (рис 7). Стрелки у искомых векторов ставим так, чтобы они шли в одном направлении со стрелками заданных векторов. Получим замкнутый силовой многоугольник.
Рис.7
N1= см; N3 = см.
Измерив отрезки и, умножая их на масштаб, получим:
N1= · 10 = кН;
N2 = · 10 = кН.
Остается выяснить, растянуты или сжаты стержни N1 и N2. Для этого нужно сравнить их направление в многоугольнике сил с направлениями, что мы предположили в начале. Если направления совпадают, то стержень растянут, если направления не совпадают, то стержень сжат.
Окончательно получим:
N1 = кН,
N2 = кН.
Ответ:
Аналитическое решение: N1 = кН
N2 = кН.
Графическое решение: N1= кН
N2 = кН.
ВАРИАНТ №24
Задача №1.
Определить равнодействующую сходящихся сил аналитическим и графическим методами (рис 1).
y F1 Дано:
F1 = 95 кН, F2 = 105 кН,
F3 = 85 кН, α1 = 60 о,
α1 F2 x α2 = 80 о.
α2 Определить: R.
F3
Рис.1
Решение.
1. Аналитический метод.
Сначала надо определить проекции заданных сил на оси координат, после чего легко найти проекцию равнодействующей силы на эти оси.
Величину равнодействующей найдем по формуле
Строим схему с соблюдением заданных углов α1 и α2 (без соблюдения масштаба сил, рис 2).
y
x
Рис.2
Для вычисления проекций сил сначала определяем знак проекции, а затем ее абсолютную величину. Проекция положительна, если угол между положительным направлением оси и силой меньше 900 (сила и ось направлены в одну сторону); в противном случае проекция отрицательна. Чтобы получить величину проекции, надо умножить величину силы на косинус угла между силой и ее проекцией (т.е. всегда берется косинус острого угла).
Проекция равнодействующей силы:
ее величина
2.Графический метод.
Выберем масштаб сил: m = 10кН/см, тогда силы F1, F2, F3 будут откладываться отрезками:
Рис.3
R = см
R = · m = ·10 = кН.
Задача №2.
Определить усилия в стержнях АС и АВ, возникающие от силы F, приложенной к узлу А, аналитическим и графическим методами (рис.4).
Дано: F = 70 кН.
А В
90о
F
С 45о
Рис.4
Определить: усилия NАВ и NАС.
Решение:
А 2 В А N2
90o
1F 45o
С 45о N1 F
Рис.5 Рис.6
1. Строим схему, соблюдая все заданные углы (без соблюдения масштаба сил, рис.5). Рассматриваем равновесие точки А, в которой сходятся все стержни и внешние силы.
2. Отбрасываем связи АВ и АС, заменяя их усилиями в стержнях N1 и N2. Направление усилий примем от узла А, предполагая стержни растянутыми. Выполним на отдельном чертеже схему действия сил в точке А (рис.6).
3. Выберем систему координат таким образом, чтобы одна из осей совпала с неизвестным усилием. Составляем уравнения равновесия плоской системы сходящихся сил:
(1)
(2)
Из уравнения ( ) находим усилие :
Найденное значение подставляем в уравнение ( ) и находим из него значение :
Окончательно получаем:
N1 =
N2 =
II. Графический метод.
1. Так как узел А находится в равновесии, то многоугольник из заданной и двух искомых сил должен быть замкнутым. Выбираем масштаб сил m = 10кН/см, тогда сила F будут откладываться отрезком:
Из произвольной т.О откладываем отрезок, соответствующий величине и направлению силы
Силы N1 и N2 неизвестны, но известны их направления. Поэтому, зная, что силовой многоугольник должен быть замкнут (условие равновесия сходящихся сил), из начала отрезка F проводим прямую, параллельную вектору , а из конца отрезка F проводим прямую, параллельную вектору . Точка их пересечения является вершиной силового многоугольника (рис 7). Стрелки у искомых векторов ставим так, чтобы они шли в одном направлении со стрелками заданных векторов. Получим замкнутый силовой многоугольник.
Рис.7
N1 = см; N2 = см.
Измерив отрезки и, умножая их на масштаб, получим:
N1= · 10 = кН;
N2= · 10 = кН.
Остается выяснить, растянуты или сжаты стержни N1 и N2. Для этого нужно сравнить их направление в многоугольнике сил с направлениями, что мы предположили в начале. Если направления совпадают, то стержень растянут, если направления не совпадают, то стержень сжат.
Окончательно получим:
N1 = кН,
N2 = кН.
Ответ:
Аналитическое решение: N1 = кН
N2= кН.
Графическое решение: N1 = кН
N2 = кН.
ВАРИАНТ №25
Задача №1.
Определить равнодействующую сходящихся сил аналитическим и графическим методами (рис 1).
y F1 Дано:
F1 = 45 кН, F2 = 25 кН,
F3 = 65 кН, α1 = 10 о,
α1 F2 x α2 = 20 о.
α2 Определить: R.
F3
Рис.1
Решение.
1. Аналитический метод.
Сначала надо определить проекции заданных сил на оси координат, после чего легко найти проекцию равнодействующей силы на эти оси.
Величину равнодействующей найдем по формуле
Строим схему с соблюдением заданных углов α1 и α2 (без соблюдения масштаба сил, рис 2).
y
x
Рис.2
Для вычисления проекций сил сначала определяем знак проекции, а затем ее абсолютную величину. Проекция положительна, если угол между положительным направлением оси и силой меньше 900 (сила и ось направлены в одну сторону); в противном случае проекция отрицательна. Чтобы получить величину проекции, надо умножить величину силы на косинус угла между силой и ее проекцией (т.е. всегда берется косинус острого угла).
Проекция равнодействующей силы:
ее величина
2.Графический метод.
Выберем масштаб сил: m = 10кН/см, тогда силы F1, F2, F3 будут откладываться отрезками:
Рис.3
R = см
R = · m = ·10 = кН.
Задача №2.
Определить усилия в стержнях АС и АВ, возникающие от силы F, приложенной к узлу А, аналитическим и графическим методами (рис.4).
Дано: F = 40 кН.
В 40о 40о С
40о
А F
Определить: усилия NАВ и NАС.
Решение:
В С
1 40o 40o 2 N1 N2
40o 40o
A F A F
Рис.5 Рис.6
1. Строим схему, соблюдая все заданные углы (без соблюдения масштаба сил, рис.5). Рассматриваем равновесие точки А, в которой сходятся все стержни и внешние силы.
2. Отбрасываем связи АВ и АС, заменяя их усилиями в стержнях N1 и N2. Направление усилий примем от узла А, предполагая стержни растянутыми. Выполним на отдельном чертеже схему действия сил в точке А (рис.6).
3. Выберем систему координат таким образом, чтобы одна из осей совпала с неизвестным усилием. Составляем уравнения равновесия плоской системы сходящихся сил:
(1)
(2)
Из уравнения ( ) находим усилие :