Электродвижущая сила и напряжение

Силы не электростатического происхождения, действующие на заряды со стороны источников тока, называются сторонними.

Сторонние силы совершают работу по перемещению электрических зарядов.

Физическая величина, определяемая работой, совершаемой сторонними силами при перемещении единичного положительного заряда, называется электродвижущей силой (Э.Д.С.), действующей в цепи:

Электродвижущая сила и напряжение - student2.ru (2.1)

Сторонняя сила Fст действующая на заряд Qо, может быть выражена как

Электродвижущая сила и напряжение - student2.ru

где Ест – напряженность поля сторонних сил.

Работа сторонних сил по перемещению заряда Qo на замкнутом участке цепи равна

Электродвижущая сила и напряжение - student2.ru (2.2)

Разделив (2.2) на Qo, получим выражение для Э.Д.С., действующей в цепи:

Электродвижущая сила и напряжение - student2.ru

т. е. Э.Д.С., действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил.

Э.Д.С., действующая на участке 1 – 2, равна

Электродвижущая сила и напряжение - student2.ru (2.3)

На заряд Qo помимо сторонних сил действуют также силы электростатического поля

Электродвижущая сила и напряжение - student2.ru

Таким образом, резуль­тирующая сила, действующая в цепи на заряд Qо, равна

Электродвижущая сила и напряжение - student2.ru

Работа, совершаемая результирующей силой над зарядом Qo на участке 1 – 2,равна

Электродвижущая сила и напряжение - student2.ru

Используя выражение для разности потенциалов, можем записать

Электродвижущая сила и напряжение - student2.ru (2.4)

Для замкнутой цепи работа электростати­ческих сил равна нулю.

Поэтому, в данном случае

Электродвижущая сила и напряжение - student2.ru

Напряжением Uна участке 1 – 2называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении единичного положительного заряда на данном участке цепи.

Таким образом, согласно (2.4)

Электродвижущая сила и напряжение - student2.ru .

§ 3. Закон Ома.

Сопротивление проводников

Немецкий физик Г. Ом (1787 – 1854) экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т.е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению Uна концах проводника:

Электродвижущая сила и напряжение - student2.ru (3.1)

где R – электрическое сопротивление проводника.

Уравнение (3.1) выражает закон Ома для участка цепи (не содержащего источника э.д.с.): сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Формула (3.1) позволяет установить единицу со­противления – ом (Ом): 1 Ом – сопротивление такого проводника, в котором при напряжении 1 В течет постоянный ток 1 А.

Величина

Электродвижущая сила и напряжение - student2.ru

называется электрической проводимостью проводника.

Единица проводимости – сименс (См): 1 См – проводимость участка электрической цепи сопротивлением 1 Ом.

Для однородного линейного проводника сопротивление Rпрямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения S:

Электродвижущая сила и напряжение - student2.ru (3.2)

где r– удельное электрическое сопротивление.

Единица удельного электрического сопротивления – ом×метр (Ом×м).

Наименьшим удельным сопротивлением обладают серебро (1,6×10-8 Ом×м) и медь (1,7×10-8 Ом×м).

Закон Ома можно представить в дифференциальной форме. Подставив выражение для сопротивления (3.2) в закон Ома (3.1), получим

Электродвижущая сила и напряжение - student2.ru (3.3)

где

Электродвижущая сила и напряжение - student2.ru

обратная удельному сопротивлению, называется удельной электрической прово­димостьювещества проводника.

Единица измерения – сименс на метр (См/м).

Учитывая, что Электродвижущая сила и напряжение - student2.ru –напряженность электриче­ского поля в проводнике, Электродвижущая сила и напряжение - student2.ru – плотность тока, формулу (3.3) можно записать в виде

Электродвижущая сила и напряжение - student2.ru (3.4)

Выражение (3.4) – закон Ома в дифференциальной форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.

Опыт показывает, что в первом приближении изменение удельного сопротивления, а следовательно, и сопротивления, с температурой описывается линейным законом:

Электродвижущая сила и напряжение - student2.ru

где r и rо R и Ro–соответственно удельные сопротивления и сопротивления проводника при t и 0 oС, a – температурный коэффициент сопротивления, для чистых металлов (при не очень низких температурах) близкий к 1/273 К-1.

Значит, температурная зависимость сопротивлении может быть представлена в виде

Электродвижущая сила и напряжение - student2.ru

Электродвижущая сила и напряжение - student2.ru где Т – термодинамическая температура.

Качественная температурная зависимость сопротивления металла представлена на рис. 3.1 (кривая 1). Впоследствии было обнаружено, что сопротивление многих металлов (например, Al, Pb, Zn и др.) и их сплавов, при очень низких температурах Тк (0,14 – 20 К), называемых критическими, характерных для каждого вещества, скачкообразно уменьшается до нуля (кривая 2),т.е. металл становится абсолютным проводником. Впервые это явление, называемое сверхпроводимостью, обнаружено в 1911 г.Г. Камерлинг-Оннесом для ртути.

§ 4. Работа и мощность тока. Закон Джоуля – Ленца

Рассмотрим однородный проводник, к кон­цам которого приложено напряжение U. За время Dt через сечение проводника перено­сится заряд

Электродвижущая сила и напряжение - student2.ru

Так как ток представляет собой перемещение заряда dq под действием электрического поля, то работа тока

Электродвижущая сила и напряжение - student2.ru (4.1)

Если сопротивление проводника R, то, ис­пользуя закон Ома (3.1), получим

Электродвижущая сила и напряжение - student2.ru (4.2)

Из (4.1) и (4.2) следует, что мощность тока

Электродвижущая сила и напряжение - student2.ru (4.3)

Работа тока выражается в джоулях, а мощность – в ваттах.

На практике применяются также внесистемные единицы работы тока: ватт×час (Вт×ч) и киловатт×час (кВт×ч). 1 Вт×ч – работа тока мощностью в 1 Вт в течение 1 ч:

1 Вт×ч = 3600 Вт×с = 3,6×103 Дж; 1 кВт×ч =103 Вт×ч = 3,6×106 Дж.

Если ток проходит по неподвижномуметаллическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии,

Электродвижущая сила и напряжение - student2.ru (4.4)

Таким образом, используя выражения (4.4), (4.1) и (4.2), получим

Электродвижущая сила и напряжение - student2.ru (4.5)

Выражение (4.5) представляет собой закон Джоуля – Ленца, экспериментально установленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем.

Выделим в проводнике элементарный цилиндрический объём

Электродвижущая сила и напряжение - student2.ru

(ось цилиндра совпадает с направлением тока),

сопротивление цилиндра

Электродвижущая сила и напряжение - student2.ru

По закону Джоуля – Ленца, за время dt в этом объёме выделится теплота

Электродвижущая сила и напряжение - student2.ru

Количество теплоты, выделяющееся за единицу времени в единице объёма, называется удельной тепловой мощностью тока.Она равна

Электродвижущая сила и напряжение - student2.ru (4.6)

Используя дифференциальную форму за­кона Ома ( Электродвижущая сила и напряжение - student2.ru ) и соотношение Электродвижущая сила и напряжение - student2.ru , получим

Электродвижущая сила и напряжение - student2.ru (4.7)

Формулы (4.6) и (4.7) являются обоб­щенным выражением закона Джоуля – Ленца в дифференциальной форме,пригодным для любого проводника.

Закон Ома

Наши рекомендации