Тема. Розв’язування задач на обчислення визначених інтегралів частинами та заміною змінних

Мета роботи:Навчитись обчислювати визначені інтеграли частинами та заміною змінних.

Наочне забезпечення та обладнання:

1. Інструкційні картки

2. Приклади задач

3. Роздаткові матеріали: опорні конспекти “Основні формули інтегрування”

4. Обчислювальні засоби: калькулятор.

Тема. Розв’язування задач на обчислення визначених інтегралів частинами та заміною змінних - student2.ru

Теоретичні відомості про правила інтегрування та застосування визначеного інтегралу.

Визначений інтеграл та методи його обчислення

Формула Ньютона – Лейбніца.

Для обчислення визначеного інтеграла від функції Тема. Розв’язування задач на обчислення визначених інтегралів частинами та заміною змінних - student2.ru в тому випадку, коли можна знайти відповідний невизначений інтеграл Тема. Розв’язування задач на обчислення визначених інтегралів частинами та заміною змінних - student2.ru , є формула Ньютона – Лейбніца: Тема. Розв’язування задач на обчислення визначених інтегралів частинами та заміною змінних - student2.ru ,

тобто визначений інтеграл дорівнює різниці значень первісної при верхній і нижній межах інтегрування.

Метод підстановки у визначеному інтегралі.

1. Метод підстановки у визначеному інтегралі дає можливість звести інтегрування складеної функції до інтегрування табличної функції. Метод підстановки опирається на формулу диференціювання складеної функції.

2. Метод підстановки у визначеному інтегралі відрізняється від методу підстановки у невизначеному тим, що ми після обчислення інтегралу не повертаємось до старої змінної інтегрування, оскільки змінюємо межі інтегрування.

Метод інтегрування частинами у визначеному інтегралі.

1. Інтегрування частинами у визначеному інтегралі базується на формулі похідної добутку:

Тема. Розв’язування задач на обчислення визначених інтегралів частинами та заміною змінних - student2.ru

2. Для інтегрування виразів виду:

Тема. Розв’язування задач на обчислення визначених інтегралів частинами та заміною змінних - student2.ru ,

де Р(х) – многочлен u слід приймати многочлен, що допоможе знизити його степінь.

Для інтегралів виду Тема. Розв’язування задач на обчислення визначених інтегралів частинами та заміною змінних - student2.ru доцільно за u приймати функції arcсosx, arcsinx та lnx, а за dv вираз Р(х).

Завдання 1. Обчислити визначені інтеграли:

а) Тема. Розв’язування задач на обчислення визначених інтегралів частинами та заміною змінних - student2.ru ; б) Тема. Розв’язування задач на обчислення визначених інтегралів частинами та заміною змінних - student2.ru в) Тема. Розв’язування задач на обчислення визначених інтегралів частинами та заміною змінних - student2.ru

                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           

а) Тема. Розв’язування задач на обчислення визначених інтегралів частинами та заміною змінних - student2.ru б) Тема. Розв’язування задач на обчислення визначених інтегралів частинами та заміною змінних - student2.ru в) Тема. Розв’язування задач на обчислення визначених інтегралів частинами та заміною змінних - student2.ru

                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           
                                                           

Питання для самоконтролю знань, умінь

1. Пояснити зміст визначеного інтеграла як границі інтегральної суми.

2. Властивості визначеного інтегралу:

· інтеграл суми функцій;

· винесення коефіцієнта за знак інтеграла;

· похідна від інтеграла;

· інтеграл, взятий на участках одного проміжку.

3. Формула для обчислення площ плоских фігур, часткові випадки.

4. Суть методу заміни змінної у визначеному інтегралі;

5. Чим відрізняється метод заміни змінної у визначеному інтегралі від цього ж методу у невизначеному ?

6. Суть методу інтегрування частинами у визначеному інтегралі.

7. Випадки застосування методу інтегрування частинами в запропонованих інтегралах: Тема. Розв’язування задач на обчислення визначених інтегралів частинами та заміною змінних - student2.ru

Тема. Розв’язування задач на обчислення визначених інтегралів частинами та заміною змінних - student2.ru

Висновок. _________________________________________________________

____________________________________________________________________

Перевірив викладач ___________ Оцінка ___________ Дата___________

ПРАКТИЧНА РОБОТА № 14

Наши рекомендации