Характеристическое уравнение имеет сопряженные комплексные корни
Характеристическое уравнение имеет два различных действительных корня
Если характеристическое уравнение имеет два различных действительных корня , (т.е., если дискриминант ), то общее решение однородного уравнения выглядит так:
, где – константы.
В случае если один из корней равен нулю, решение очевидным образом упрощается; пусть, например, , тогда общее решение: .
Пример 1
Решить дифференциальное уравнение
Решение: составим и решим характеристическое уравнение:
,
Получены два различных действительных корня (от греха подальше лучше сразу же выполнить проверку, подставив корни в уравнение).
Всё, что осталось сделать – записать ответ, руководствуясь формулой
Ответ: общее решение:
Характеристическое уравнение имеет два кратных действительных корня
Если характеристическое уравнение имеет два кратных (совпавших) действительных корня (дискриминант ), то общее решение однородного уравнения принимает вид:
, где – константы.
Вместо в формуле можно было нарисовать , корни всё равно одинаковы.
Если оба корня равны нулю , то общее решение опять же упрощается: . Кстати, является общим решением того самого примитивного уравнения , о котором я упоминал в начале урока. Почему? Составим характеристическое уравнение: – действительно, данное уравнение как раз и имеет совпавшие нулевые корни .
Пример 3
Решить дифференциальное уравнение
Решение: составим и решим характеристическое уравнение:
Здесь можно вычислить дискриминант, получить ноль и найти кратные корни. Но можно невозбранно применить известную школьную формулу сокращенного умножения:
(конечно, формулу нужно увидеть, это приходит с опытом решения)
Получены два кратных действительных корня
Ответ: общее решение:
Характеристическое уравнение имеет сопряженные комплексные корни
Для понимания третьего случая требуются элементарные знания про комплексные числа. Если материал позабылся, прочитайте урок Комплексные числа для чайников, в частности, параграф Извлечение корней из комплексных чисел.
Если характеристическое уравнение имеет сопряженные комплексные корни , (дискриминант ), то общее решение однородного уравнения принимает вид:
, где – константы.
Примечание: Сопряженные комплексные корни почти всегда записывают кратко следующим образом:
Если получаются чисто мнимые сопряженные комплексные корни: , то общее решение упрощается:
Пример 5
Решить однородное дифференциальное уравнение второго порядка
Решение: Составим и решим характеристическое уравнение:
– получены сопряженные комплексные корни
Ответ: общее решение:
Как видите, особых сложностей с однородными уравнениями нет, главное, правильно решить квадратное уравнение.
Иногда встречаются нестандартные однородные уравнения, например уравнение в виде , где при второй производной есть некоторая константа , отличная от единицы (и, естественно, отличная от нуля). Алгоритм решения ничуть не меняется, следует невозмутимо составить характеристическое уравнение и найти его корни. Если характеристическое уравнение будет иметь два различных действительных корня, например: , то общее решение запишется по обычной схеме: .
В ряде случаев из-за опечатки в условии могут получиться «нехорошие» корни, что-нибудь вроде . Что делать, ответ придется записать так:
С «плохими» сопряженными комплексными корнями наподобие тоже никаких проблем, общее решение:
То есть, общее решение в любом случае существует. Потому что любое квадратное уравнение имеет два корня.