В результате изучения математики ученик должен

знать/понимать

· существо понятия алгоритма; приводить примеры алгоритмов;

· как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

· как математический язык может описывать реальные зависимости; приводить примеры такого описания;

· как потребности практики привели математическую науку к необходимости расширения понятия числа;

· каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

Арифметикауметь

· выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

· переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь – в виде процентов

· выполнять арифметические действия с рациональными числами, сравнивать рациональные числа; находить значения числовых выражений;

· округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

· пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

· решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

· решать линейные уравнения.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

· решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

· устной прикидки и оценки результата вычислений; проверки результата вычисления, с использованием различных приемов.

Алгебра уметь

· составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, выражать из формул одну переменную через остальные;

· решать линейные уравнения;

· изображать числа точками на координатной прямой;

· определять координаты точки плоскости, строить точки с заданными координатами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

· выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;

Геометрия уметь

· распознавать изученные геометрические фигуры, различать их взаимное расположение;

· изображать изученные геометрические фигуры;

· распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

· построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Элементы логики, комбинаторики, статистики и теории вероятностей

уметь

· извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы;

· решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;

· вычислять средние значения результатов измерений;

· использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

· распознавания логически некорректных рассуждений;

· анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

· решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

· решения учебных и практических задач, требующих систематического перебора вариантов.

V. Перечень учебно – методического обеспечения

  1. Программа. Планирование учебного материала. Математика. 5-6 классы/авт.-сост. В.И. Жохов. – М.:Мнемозина,2010.
  1. Учебник: «Математика 6 класс» Н.Я.Виленкин, В.И.Жохов, А.С Чесноков, С.И.Шварцбурд, изд. М.: Мнемозина,2011г

Литература для учителя

1. Жохов В.И., Преподавание математики в 5 и 6 классах.-М.Мнемозина, 2004-2007.

2. Чесноков А.С., Нешков К.И. Дидактические материалы по математике для 5 класса.-М.Просвещение, 1990-2000.

3. Шарыгин И.Ф., Шевкин К.И. Математика. Задачи на смекалку. Учебное пособие для 5-6 классов общеобразовательных учреждений. – М.Просвещение, 1995-1996.

4. Кривоногов В.В. Нестандартные задания по математике: 5-11 классы.-М.Издательство «Первое сентября» 2003.

  1. М.Ю.Шуба. Занимательные задания в обучении математике. М. «Просвещение»1995
  2. О.Л.Безрукова. Задания для подготовки к олимпиадам: 5-11 классы. Издательство «Учитель» Волгоград 2009.

Литература для учащихся

1. Чесноков А.С., Нешков К.И. Дидактические материалы по математике для 6 класса.-М.Просвещение, 1990-2000.

2. Шарыгин И.Ф., Шевкин К.И. Математика. Задачи на смекалку. Учебное пособие для 5-6 классов общеобразовательных учреждений. – М.Просвещение, 1995-1996.

3. Кривоногов В.В. Нестандартные задания по математике: 5-11 классы.-М.Издательство «Первое сентября» 2003.

4. Абдрашитов Б.М. Учитесь мыслить нестандартно»: книга для учащихся.М.Просвещение: АО «Учебная литература» 1996.

  1. Н.Я.Виленкин и др. «Математика 6 класс» Учебник для общеобразовательных учреждений. – Москва: Мнемозина, 2008;

6. О.Л.Безрукова. Задания для подготовки к олимпиадам: 5-11 классы. Издательство

«Учитель» Волгоград



VI. Календарно-тематическое планирование учебного материала

Наши рекомендации