Одна из основных целей системного анализа - выявление внут­ренних свойств системы, определяющих ее поведение

КЛАССИФИКАЦИЯ СИСТЕМ

Системы принято подразделять на физические и абстрактные, динамические и статические, простые и сложные, естественные и искусственные, с управлением и без управления, непрерывные и дискретные, детерминированные и стохастические, открытые и замкнутые.

Деление систем на физические и абстрактныепозволяет раз­личать реальные системы (объекты, явления, процессы) и систе­мы, являющиеся определенными отображениями (моделями) ре­альных объектов.

Для реальной системы может быть построено множество сис­тем - моделей, различаемых по цели моделирования, по требуе­мой степени детализации и по другим признакам.

Деление систем на простые и сложные (большие)подчерки­вает, что в системном анализе рассматриваются не любые, а имен­но сложные системы большого масштаба. При этом выделяют структурную и функциональную (вычислительную) сложность.

Общепризнанной границы, разделяющей простые, большие и сложные системы, нет. Однако условно будем считать, что слож­ные системы характеризуются тремя основными признаками: свойством робастности, наличием неоднородных связей и эмерджентностью.

Во-первых, сложные системы обладают свойством робастно­сти- способностью сохранять частичную работоспособность (эффективность) при отказе отдельных элементов или подсистем. Оно объясняется функциональной избыточностью сложной сис­темы и проявляется в изменении степени деградации выполняе­мых функций, зависящей от глубины возмущающих воздействий. Простая система может находиться не более чем в двух состоя­ниях: полной работоспособности (исправном) и полного отказа (неисправном).

Во-вторых, в составе сложных систем кроме значительного количества элементов присутствуют многочисленные и разные по типу (неоднородные) связи между элементами. Основными типа­ми считаются следующие виды связей: структурные (в том числе иерархические), функциональные, каузальные (причинно-след­ственные, отношения истинности), информационные, простран­ственно-временные. По этому признаку будем отличать сложные системы от больших систем, представляющих совокупность од­нородных элементов, объединенных связью одного типа. В-третьих, сложные системы обладают свойством, которое отсутствует у любой из составляющих ее частей. Это интегративность (целостность), или эмерджентность. Другими словами, от­дельное рассмотрение каждого элемента не дает полного пред­ставления о сложной системе в целом. Эмерджентность может достигаться за счет обратных связей, играющих важнейшую роль в управлении сложной системой.

Считается, что структурная сложность системы должна быть пропорциональна объему информации, необходимой для ее опи­сания (снятия неопределенности). В этом случае общее количе­ство информации о системе S, в которой априорная вероятность появления j-гo свойства равна р(уj), определяется известным со­отношением для количества информации

I(Y) = - ∑p(yj) log2p(yj). (1.6)

Это энтропийный подход к дескриптивной (описательной) сложности.

Одним из способов описания такой сложности является оцен­ка числа элементов, входящих в систему (переменных, состояний, компонентов), и разнообразия взаимозависимостей между ними.

В общей теории систем утверждается, что не существует сис­тем обработки данных, которые могли бы обработать более чем 2 . 1047 бит в секунду на грамм своей массы. При этом компьютер­ная система, имеющая массу, равную массе Земли, за период, рав­ный примерно возрасту Земли, может обработать порядка 1093 бит информации (предел Бреммермана). Задачи, требующие об­работки более чем 1093 бит, называются трансвычислительньши. В практическом плане это означает, что, например, полный анализ системы из ПО переменных, каждая из которых может принимать 7 разных значений, является трансвычислительной за­дачей.

Сложные системы допустимо делить на искусственныеи ес­тественные(природные).

Искусственные системы, как правило, отличаются от природ­ных наличием определенных целей функционирования (назначе­нием) и наличием управления.

Рассмотрим еще один важный признак классификации сис­тем. Принято считать, что система с управлением,- имеющая не­тривиальный входной сигнал x(t) и выходной сигнал y(t), может рассматриваться как преобразователь информации, перерабаты­вающий поток информации (исходные данные) x(t) в поток ин­формации (решение по управлению) y(t).

В соответствии с типом значений x(t), y(t), z(t) и системы де­лятся на дискретные и непрерывные.

Такое деление проводится в целях выбора математического аппарата моделирования. Так, теория обыкновенных дифферен­циальных уравнений и уравнений в частных производных позво­ляет исследовать динамические системы с непрерывной перемен­ной (ДСНП). С другой стороны, современная техника создает антропогенные динамические системы с дискретными события­ми (ДСДС), не поддающиеся такому описанию. Изменения со­стояния этих систем происходят не непрерывно, а в дискретные моменты времени, по принципу «от события к событию». Мате­матические (аналитические) модели заменяются на имитацион­ные, дискретно-событийные: модели массового обслуживания, сети Петри, цепи Маркова и др.

Примеры фазовых траекторий ДСДС и ДСНП показаны на рис. 1.3, а, б.

Для ДСДС траектория является кусочно-постоянной и фор­мируется последовательностью событий и. Последовательность отрезков постоянства отражает последовательность состояний z системы, а длительность каждого отрезка отражает время пре­бывания системы в соответствующем состоянии. Под состоя­нием при этом понимается «физическое» состояние (например, число сообщений, ожидающих передачи в каждом узле обра­ботки). Состояния принимают значения из дискретного мно­жества.

Рис- 1.З. Типичные примеры фазовых траекторий ДСДС(й)иДСНП(б)

Для перехода от детерминированной к стохастической системе достаточно в правые части соотношений (см. ниже) добавить в качестве аргументов функционалов случайную функцию р(t), принимающую значения на непрерывном или дискретно множестве действительных чисел.

Эти соотношения называют уравнениями наблюдения и уравнением состояния системы.Еслив описание системы введены функционалы f и g, то она уже не рассматривается как «черный ящик». Однако для многих систем определение глобальных уравнений оказывается делом трудным и зачастую невозможным (уч. пособие СА в управлении, В.С.Анфилатов стр. 23).

Следует иметь ввиду, что в отличии от математики для СА, как и для кибернетики, характерен конструктивный подход к изучаемым объектам. Это требует корректности задания системы, под которой понимается возможность фактического вычисления входного сигнала y(t) для всех t больше 0 при задании начального состояния системы z(0) и входного сигнала x(t) для всех ti.

Системы с нетривиальным входным сигналом x(t), источником которого нельзя управлять (непосредственно наблюдать), или системы, в которых неоднозначность их реакции нельзя объяснить разницей в состоянии, называется открытыми. Признаком, по которому можно определить открытую систе­му, служит наличие взаимодействия с внешней средой. Взаимо­действие порождает проблему «предсказуемости» значений вы­ходных сигналов и, как следствие, - трудности описания откры­тых систем.

Примером трудностей описания является понятие «странный аттрактор» - специфическое свойство некоторых сложных систем. Простейший аттрактор, называемый математиками непод­вижной точкой, представляет собой такой вид равновесия, кото­рый характерен для состояния устойчивых систем после кратков­ременного возмущения (состояние покоя емкости с водой после встряхивания). Второй вид аттрактора - предельный цикл маят­ника. Все разновидности предельного цикла предсказуемы. Тре­тья разновидность называется странным аттрактором. Обнару­жено много систем, имеющих встроенные в них источники нару­шений, которые не могут быть заранее предсказаны (погода, место остановки шарика в рулетке). В экспериментах наблюдали за краном, из которого нерегулярно капали капли, хотя проме­жутки должны быть регулярными и предсказуемыми, так как вен­тиль зафиксирован и поток воды постоянен.

Понятие открытости систем конкретизируется в каждой пред­метной области. Например, в области информатики открытыми информационными системами называются программно-аппарат­ные комплексы, которым присущи следующие свойства:

• переносимость (мобильность) - программное обеспечение (ПО) может быть легко перенесено на различные аппаратные платформы и в различные операционные среды;

• стандартность - программное обеспечение соответствует опубликованному стандарту независимо от конкретного разра­ботчика ПО;

• наращиваемость возможностей - включение новых про­граммных и технических средств, не предусмотренных в перво­начальном варианте;

• совместимость - возможность взаимодействовать с други­ми комплексами на основе развитых интерфейсов для обмена данными с прикладными задачами в других системах.

В отличие от открытых замкнутые (закрытые) системы изо­лированы от среды - не оставляют свободных входных компо­нентов ни у одного из своих элементов. Все реакции замкнутой системы однозначно объясняются изменением ее состояний. Век­тор входного сигнала x(t) в замкнутых системах имеет нулевое число компонентов и не может нести никакой информации. Замкнутые системы в строгом смысле слова не должны иметь не только входа, но и выхода. Однако даже в этом случае их можно интерпретировать как генераторы информации, рассматривая из­менение их внутреннего состояния во времени. Примером физи­ческой замкнутой системы является локальная сеть для обработ­ки конфиденциальной информации.

Основным противоречием, которое приходится разрешать в замкнутых системах, является проблема возрастания энтропии. Согласно второму закону термодинамики по мере движения зам­кнутой системы к состоянию равновесия она стремится к мак­симальной энтропии (дезорганизации), соответствующей мини­мальной информации. Открытые системы могут изменить это стремление к максимальной энтропии, получая внешнюю по от­ношению к системе свободную энергию, и этим поддерживают организацию.

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

СИСТЕМНОГО АНАЛИЗА

Для оперирования основными понятиями системного анали­за будем придерживаться следующих словесно-интуитивных или формальных определений.

Элемент- некоторый объект (материальный, энергетичес­кий, информационный), обладающий рядом важных свойств и реализующий в системе определенный закон функционирования FS, внутренняя структура которого не рассматривается.

Формальное описание элемента системы совпадает с описа­нием подмодели Ψа. Однако функционалы g и f заменяются на закон функционирования и в зависимости от целей модели­рования входной сигнал x(t) может быть разделен на три под­множества:

• неуправляемых входных сигналов , пре­образуемых рассматриваемым элементом;

• воздействий внешней среды представ­ляющих шум, помехи;

• управляющих сигналов (событий) появление которых приводит к переводу элемента из одного со­стояния в другое.

Иными словами, элемент - это неделимая наименьшая функци­ональная часть исследуемой системы, включающая < х, п, и, у, Fs> и представляемая как «черный ящик» (рис. 1.5). Функциональную модель элемента будем представлять как

Входные сигналы, воздействия внешней среды и управляю­щие сигналы являются независимыми переменными. При стро­гом подходе изменение любой из независимых переменных вле­чет за собой изменение состояния элемента системы. Поэтому в дальнейшем будем обобщенно обозначать эти сигналы как x(i), a функциональную модель элемента - как если это

не затрудняет анализ системы.

Выходной сигнал y(t), в свою очередь, представляют совокуп­ностью характеристик элемента

Под средойпонимается множество объектов S/ вне данно­го элемента (системы), которые оказывают влияние на элемент (систему) и сами находятся под воздействием элемента (системы),

Правильное разграничение исследуемого реального объекта и среды является необходимым этапом системного анализа. Часто в системном анализе выделяют понятие «суперсистема»- часть внеш­ней среды, для которой исследуемая система является элементом.

Подсистема- часть системы, выделенная по определенно­му признаку, обладающая некоторой самостоятельностью и до­пускающая разложение на элементы в рамках данного рассмот­рения.

Система может быть разделена на элементы не сразу, а после­довательным расчленением на подсистемы - совокупности эле­ментов. Такое расчленение, как правило, производится на осно­ве определения независимой функции, выполняемой данной со­вокупностью элементов совместно для достижения некой частной цели, обеспечивающей достижение общей цели системы. Подси­стема отличается от простой группы элементов, для которой не выполняется условие целостности.

Последовательное разбиение системы в глубину приводит к иерархии подсистем, нижним уровнем которых является элемент. Типичным примером такого разбиения является структура Пас­каль-программы. Так, например, тело основной программы вклю­чает модули - подсистемы первого уровня, модули включают функции и процедуры - подсистемы второго уровня, функции и процедуры включают операнды и операторы - элементы системы.

Характеристика-то, что отражает некоторое свойство элемента системы.

Характеристика уj, задается кортежем уj = < name, {value} >, где пате – имя уj-й характеристики, {value} - область допустимых значений. Область допустимых значений задается перечислени­ем этих значений или функционально, с помощью правил вычис­ления (измерения)и оценки.

Характеристики делятся на количественные и качественные в зависимости от типа отношений на множестве их значений.

Если на множестве значений заданы метризованные отноше­ния, когда указывается не только факт выполнения отношения но также и степень количественного превосходства, то

характеристика является количественной. Например, размер экрана (см), максимальное разрешение (пиксель)являются количе­ственными характеристиками мониторов, поскольку существу­ют шкалы измерений этих характеристик в сантиметрах и пиксе­лях соответственно, допускающие упорядочение возможных значений по степени количественного превосходства: размер эк­рана монитора уj 1 больше, чем размер экрана монитора уj2, на 3 см (аддитивное метризованное отношение) или максимальное разрешение у} выше, чем максимальное разрешение уj 1 два раза (мультипликативное метризованное отношение).

Если пространство значений не метрическое, то характерис­тика называется качественной.Например, такая характеристика монитора, как комфортное разрешение, хотя и измеряется в пик­селях, является качественной. Поскольку на комфортность влия­ют мерцание, нерезкость, индивидуальные особенности пользо­вателя и т.д., единственным отношением на шкале комфортнос­ти является отношение эквивалентности, позволяющее различить мониторы как комфортные и некомфортные без установления количественных предпочтений.

Количественная характеристика называется параметром.

Часто в литературе понятия «параметр» и «характеристика» отождествляются на том основании, что все можно измерить. Но в общем случае полезно разделять параметры и качественные характеристики, так как не всегда возможно или целесообразно разрабатывать процедуру количественной оценки какого-либо свойства.

Характеристики элемента являются зависимыми переменны­ми и отражают свойства элемента. Под свойствомпонима­ют сторону объекта, обусловливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодей­ствии с другими объектами.

Свойства задаются с использованием отношений - одного из основных математических понятий, используемых при анализе и обработке информации. На языке отношений единым образом можно описать воздействия, свойства объектов и связи между ними, задаваемые различными признаками. Существует несколь­ко форм представления отношений: функциональная (в виде фун­кции, функционала, оператора), матричная, табличная, логичес­кая, графовая, представление сечениями, алгоритмическая (в виде словесного правила соответствия).

Свойства классифицируют на внешние, проявляющиеся в фор­ме выходных характеристик уi только при взаимодействии с вне­шними объектами, и внутренние, проявляющиеся в форме пере­менных состояния zi при взаимодействии с внутренними элемен­тами рассматриваемой системы и являющиеся причиной внешних свойств.

Одна из основных целей системного анализа - выявление внут­ренних свойств системы, определяющих ее поведение.

По структуре свойства делят на простые и сложные (интег­ральные). Внешние простыесвойства доступны непосредствен­ному наблюдению, внутренние свойства конструируются в нашем сознании логически и не доступны наблюдению.

Следует помнить о том, что свойства проявляются только при взаимодействии с другими объектами или элементами одного объекта между собой.

По степени подробности отражения свойств выделяют гори­зонтальные(иерархические) уровни анализа системы. По харак­теру отражаемых свойств выделяют вертикальные уровни ана­лиза - аспекты. Этот механизм лежит в основе утверждения о том, что для одной реальной системы можно построить множество абстрактных систем.

При проведении системного анализа на результаты влияет фактор времени. Для своевременного окончания работы необхо­димо правильно определить уровни и аспекты проводимого ис­следования. При этом производится выделение существенных для данного исследования свойств путем абстрагирования от несу­щественных по отношению к цели анализа подробностей.

Формально свойства могут быть представлены также и в виде закона функционирования элемента.

Законом функционирования Fs, описывающим процесс функ­ционирования элемента системы во времени, называется зависи­мость y(t) = Fs( x, n, и, t).

Оператор Fs преобразует независимые переменные в зависи­мые и отражает поведение элемента(системы) во времени - про­цесс изменения состояния элемента (системы), оцениваемый по степени достижения цели его функционирования. Понятие пове­дения принято относить только к целенаправленным системам и оценивать по показателям.

Цель - ситуация или область ситуаций, которая должна быть достигнута при функционировании системы за определенный промежуток времени. Цель может задаваться требованиями к показателям результативности, ресурсоемкости, оперативности функционирования системы либо к траектории достижения за­данного результата. Как правило, цель для системы определяет­ся старшей системой, а именно той, в которой рассматриваемая система является элементом-

Показатель - характеристика, отражающая качество j-й системы или целевую направленность процесса (операции), реа­лизуемого у-й системой:

Показатели делятся на частные показатели качества(или эф­фективности) системы уji которые отражают i-e существенное свойство j-й системы, и обобщенный показатель качества(или эф­фективности) системы Yj - вектор, содержащий совокупность свойств системы в целом. Различие между показателями качества и эффективности состоит в том, что показатель эффективности характеризует процесс (алгоритм) и эффект от функционирова­ния системы, а показатели качества - пригодность системы для использования ее по назначению.

Вид отношений между элементами, который проявляется как некоторый обмен (взаимодействие), называется связью.Как правило, в исследованиях выделяются внутренние и внешние свя­зи. Внешние связи системы - это ее связи со средой. Они проявля­ются в виде характерных свойств системы. Определение внешних связей позволяет отделить систему от окружающего мира и явля­ется необходимым начальным этапом исследования.

Наши рекомендации