Исследование простейшей математической модели работы газотурбинного двигателя

Газотурбинный двигатель (ГТД) является основной силовой установкой современных самолетов.

Схема ГТД имеет вид, показанный на рис. 2.5.

 
  Исследование простейшей математической модели работы газотурбинного двигателя - student2.ru

Здесь 1 – входной диффузор; 2 – компрессор; 3 – камера сгорания; 4 – турбина;
5 – выходное сопло.

Цикл работы ГТД включает следующие этапы:

1) Набегающий со скоростью V поток воздуха через диффузор поступает в компрессор.

2) Компрессор, вращаясь на одном валу с турбиной, сжимает воздух, который поступает в камеру сгорания.

3) В камеру сгорания постоянно впрыскивается топливо (керосин), которое смешивается со сжатым воздухом.

4) Газ, образующийся от сгорания, поступает на турбину, которая разгоняет его до скорости W.

5) С этой скоростью газ через сопло выбрасывается в атмосферу.

За счет того, что W > V, образуется сила тяги Р, которая позволяет самолету осуществлять полет в атмосфере.

Изменение силы тяги осуществляется путем изменения скорости впрыска топлива в камеру сгорания с помощью перемещения ручки управления двигателем (РУД). Перемещение РУД на определенный угол dРУД осуществляется либо вручную летчиком, либо с помощью исполнительного устройства по сигналам от САУ полетом. Увеличение значения dРУД вызывает возрастание силы Р, а уменьшение – убывание этой силы.

ГТД является сложной технической системой, в которой протекает значительное число физических и химических процессов. Двигатель оснащен всевозможными устройствами автоматики, системами поворота и охлаждения турбинных лопаток и т.д. Естественно, математическое описание функционирования ГТД также будет достаточно громоздким, включающим в себя системы дифференциальных уравнений в частных производных, обыкновенных дифференциальных уравнений, трансцендентных функций, алгоритмы цифровой системы управления двигателем. Такие модели используются в процессе проектирования ГТД.

Для решения задач управления полетом используется более простая модель ГТД, представляющая собой зависимость силы тяги Р от угла dРУД отклонения РУД. Процесс изменения силы тяги описывается обыкновенным дифференциальным уравнением вида:

Исследование простейшей математической модели работы газотурбинного двигателя - student2.ru , (2.11)

где t > 0 – постоянная времени двигателя, зависящая кроме конструктивных характеристик также от температуры окружающего воздуха, его влажности и других внешних факторов; k [кг/град] – коэффициент пропорциональности.

Начальное условие для уравнения (2.11) записывается как

Р(0) = Р0. (2.12)

Таким образом,уравнение (2.11) совместно с начальным условием (2.12) представляет собой простейшую математическую модель работы ГТД, записанную в виде обыкновенного дифференциального уравнения 1-го порядка.

Для определения коэффициента пропорциональности k используются градуировочные графики зависимости тяги от угла поворота РУД, построенные на основе экспериментальных данных. Тангенс угла наклона графика равен искомому коэффициенту.

 
  Исследование простейшей математической модели работы газотурбинного двигателя - student2.ru

Интегрирование уравнения (2.11) с начальным условием (2.12) позволяет выяснить, как изменяется сила тяги во времени (рис. 2.6).

При отклонении РУД тяга Р нарастает и затем стабилизируется на определенном предельном значении, т.е. ГТД является инерционным объектом.

Предельное значение силы тяги получаем из (2.11), когда скорость ее изменения равна нулю:

Исследование простейшей математической модели работы газотурбинного двигателя - student2.ru . (2.13)

Длительность нарастания зависит от значения постоянной времени двигателя t. Процесс считается установившимся при t = tуст , когда тяга входит в так называемый пятипроцентный коридор от предельного значения силы тяги (рис. 2.6). Чем больше t, тем инерционнее двигатель и, следовательно, больше tуст.

Исследование простейшей математической модели работы газотурбинного двигателя - student2.ru На рис. 2.7 показано поведение силы тяги в зависимости от угла отклонения РУД при t = 0,5.

Сила тяги при взлете, когда РУД отклонена на 10°, выходит на установившийся режим на третьей секунде и достигает величины 3390 кг. Через десять секунд после взлета, когда РУД отклонена на 20°, сила тяги устанавливается на величине 6780 кг, и еще через десять секунд, когда РУД отклонена на 30°, сила тяги устанавливается на величине 10170 кг. Предельное значение силы тяги равно
14270 кг.

Наши рекомендации