Шифрование сообщений различными методами
Рассмотрим, как зашифровать сообщение методом замены (другими словами методом подстановки). Вначале используем шифр Цезаря. Предположим, что требуется зашифровать сообщение «ГДЕ АББА».
Как известно, циклический шифр Цезаря получается заменой каждой буквы открытого текста буквами этого же алфавита, расположенными впереди через определенное число позиций, например через три позиции. Циклическим он называется потому, что при выполнении замены вслед за последней буквой алфавита вновь следует первая буква алфавита. Запишем фрагменты русского алфавита и покажем, как выполняется шифрование (порядок замены):
В результате проведенного преобразования получится шифрограмма:
В данном случае ключом является величина сдвига (число позиций между буквами). Число ключей этого шифра невелико (оно равно числу букв алфавита). Не представляет труда вскрыть такую шифрограмму перебором всех возможных ключей. Недостатком шифра Цезаря является невысокая криптостойкость. Объясняется это тем, что в зашифрованном тексте буквы по-прежнему располагаются в алфавитном порядке, лишь начало отсчета смещено на несколько позиций.
Замена может осуществляться на символы другого алфавита и с более сложным ключом (алгоритмом замены). Для простоты опять приведем лишь начальные части алфавитов. Линии показывают порядок замены букв русского алфавита на буквы латинского алфавита. Зашифруем фразу «ГДЕ АББА»:
В результате такого шифрования получится криптограмма:
CDB EFFE.
Рациональнее использованный в последнем случае ключ записать в виде таблицы:
При шифровании буквы могут быть заменены числами (в простейшем случае порядковыми номерами букв в алфавите). Тогда наша шифровка будет выглядеть так:
4—5—6—1—2—2—1.
Замена символов открытого текста может происходить на специальные символы, например, на «пляшущих человечков», как в рассказе К. Дойла или с помощью флажков, как это делается моряками.
Более высокую криптостойкость по сравнению с шифром Цезаря имеют аффинные криптосистемы.
В аффинных криптосистемах, за счет математических преобразований, буквы, заменяющие открытый текст, хаотично перемешаны. В аффинных криптосистемах буквы открытого текста нумеруются числами, например, для кириллицы от 0 до 32. Затем каждая буква открытого текста заменяется буквой, порядковый номер которой вычисляется с помощью линейного уравнения и вычисления остатка от целочисленного деления.
Аффинные криптосистемы задаются при помощи двух чисел a и b. Для русского алфавита эти числа выбираются из условия a ≥ 0, b ≤ 32. Максимальное число символов в используемом алфавите обозначаются символом g. Причем числа a и g = 33 должны быть взаимно простыми. Если это условие не будет выполняться, то две разные буквы могут отображаться (превращаться) в одну. Каждый код буквы открытого текста m заменяется кодом буквы криптограммы по следующему правилу. Вначале вычисляется число a = a×m + b, а затем выполняется операция целочисленного деления числа a на число g = 33, то есть
a = b(mod (g)). В качестве кода символа шифрограммы используется остаток от целочисленного деления b.
Для определенности выберем такие числа: a = 5 и b =3.
Фрагмент процедуры, иллюстрирующей порядок шифрования, приведен в таблице.
В ранее рассмотренных нами шифрах каждой букве открытого текста соответствовала одна определенная буква криптограммы. Подобные шифры называются шифрами одноалфавитной замены.
Длинные сообщения, полученные методом одноалфавитной замены (другое название — шифр простой однобуквенной замены), раскрываются с помощью таблиц относительных частот. Для этого подсчитывается частота появления каждого символа, делится на общее число символов в шифрограмме. Затем с помощью таблицы относительных частот определяется, какая была сделана замена при шифровании.
Повысить криптостойкость позволяют шифры многоалфавитной замены (или шифры многозначной замены). При этом каждому символу открытого алфавита ставят в соответствие не один, а несколько символов шифровки.
Ниже приведен фрагмент ключа многоалфавитной замены:
С помощью многоалфавитного шифра сообщение «ГДЕ АББА» можно зашифровать несколькими способами:
19—83—32—48—4—7—12,
10—99—15—12—4—14—12 и т. д.
Для каждой буквы исходного алфавита создается некоторое множество символов шифрограммы так, что множества каждой буквы не содержат одинаковых элементов. Многоалфавитные шифры изменяют картину статистических частот появления букв и этим затрудняют вскрытие шифра без знания ключа.
Рассмотрим еще один шифр многоалфавитной замены, который был описан в 1585 г. французским дипломатом Блезом де Виженером. Шифрование производится с помощью так называемой таблицы Виженера. Здесь, как и прежде, показана лишь часть таблицы для того, чтобы изложить лишь идею метода.
Каждая строка в этой таблице соответствует одному шифру простой замены (типа шифра Цезаря). При шифровании открытое сообщение записывают в строку, а под ним помещают ключ. Если ключ оказывается короче сообщения, то ключ циклически повторяют. Шифровку получают, находя символ в матрице букв шифрограммы. Символ шифрограммы находится на пересечении столбца с буквой открытого текста и строки с соответствующей буквой ключа.
Предположим, что нужно зашифровать сообщение «ГДЕ АББА». В качестве ключа выберем слово «ДЕВА». В результате получим:
В результате преобразований получится шифровка
ЯЯГ АЭЬЮ.
Система Плейфейра создает многоалфавитные шифры. Рассмотрим основную идею этой системы.
Шифрование производится с помощью квадрата (или прямоугольника) в который занесены буквы соответствующего национального алфавита. Буквы записываются в квадрат или прямоугольник в произвольном порядке. Этот порядок и конфигурация таблицы являются секретным ключом. Для определенности возьмем прямоугольную таблицу размером 8x4, в качестве букв алфавита – кириллицу, а буквы расположим в алфавитном порядке. Так как число русских букв 33, а число клеток – 32, исключим из таблицы букву Ё.
Предположим, что требуется зашифровать слово КРИПТОГРАФИЯ.
Рассмотрим правила шифрования.
1. Открытый текст делится на блоки по две буквы. Буквы в одном блоке не должны быть одинаковыми. Произведем разделение исходного слова на блоки по две буквы КР-ИП-ТО-ГР-АФ-ИЯ.
2. Если буквы шифруемого текста находятся в разных строках и столбцах, то в качестве заменяющих букв используются буквы, расположенные в углах прямоугольника, охватывающего буквы открытого текста. Например, блок КР заменяется символами ИТ.
3. Если буквы открытого текста попадают в одну строку, то шифрограмма получается путем циклического сдвига вправо на одну клетку. Например, блок ИП будет преобразован в ЙИ. Еще один пример к этому правилу. Если, предположим, требуется преобразовать блок КН, то получится ЛО.
4. Если обе буквы открытого текста попадают в один столбец, то для шифрования осуществляют циклический сдвиг на одну клетку вниз.
Блок ЖЦ будет преобразован в символы ОЮ, а блок ТЪ в символы ЪВ.
В соответствии с описанными правилами слово КРИПТОГРАФИЯ будет преобразовано в криптограмму ИТЙИЦКАУДРПШ.
Заметим, что если блоки открытого текста состоят из одинаковых букв, то криптограмма тоже будет содержать одинаковые пары символов. По этой причине рассмотренный шифр относится к одноалфавитным. Однако модификация этого шифра превращает его в многоалфавитную систему. Для этого используется несколько таблиц Плейфейера и производится многократное шифрование.
Здесь уместно рассмотреть криптографическую систему Хилла, в которой шифрование осуществляется с использованием математических преобразований: вычислений с помощью приемов линейной алгебры [4].
Данный шифр для отдельно взятой буквы можно считать многоалфавитным. Однако пары букв шифруются везде одинаково. Поэтому в широком смысле понятия криптографическую систему Хилла следует отнести к одноалфавитным шифрам.
Первоначально открытый текст методом замены следует преобразовать в совокупность чисел. Предположим, что шифруется текст, написанный с использованием 26-ти латинских букв. Выберем следующий алгоритм замены букв на числа: латинские буквы A, B, C, D, …, Z будем заменять соответственно числами 1, 2, 3, 4,…, 26. Другими словами: пронумеруем буквы в порядке их расположения в алфавите, и при замене будем использовать их порядковые номера. В данном случае выбран такой алгоритм замены, но понятно, что он может быть любым.
Предположим, что нужно зашифровать немецкое слово ZEIT. Заменим буквы в соответствии с их порядковыми номерами в алфавите четырьмя числами: 26 – 5 – 9 – 20.
Далее следует выбрать некоторое число d ≥ 2. Это число показывает, порядок разбиения открытого текста на группу символов (определяет, сколько букв будет в каждой группе). С математической точки зрения число d показывает, сколько строк должно быть в векторах-столбцах. Примем d = 2. Это означает, что числа 26 – 5 – 9 – 20 нужно разбить на группы по две буквы (два числа) в каждой группе и записать их в виде векторов-столбцов:
В результате шифрования по каналу связи будет оправлена последовательность чисел: 19 – 22 – 24 – 3. Для ранее выбранного ключа замены это будет соответствовать шифрограмме SVXC. Данный пример иллюстрирует тот факт, что системы шифрования часто базируются на математических преобразованиях.