Предмет теоретической механики

Теоретическая механика - это раздел механики, изучающий движение абсолютно твердого тела.

Абсолютно твердым или недеформируемым называется тело, у которого расстояния между двумя любыми точками остаются неизменными.

Частным случаем твердого тела является материальная точка – это тело, размерами которого в условиях конкретной задачи можно пренебречь.

В зависимости от особенностей механического движения теоретическая механика (ТМ) делится на статику, кинематику и динамику.

Статика рассматривает частный случай механического движения, когда оно не зависит от времени – речь идет о рассмотрении равновесия твердого тела (ТТ), загруженного системой сил и находящегося в состоянии покоя.

Кинематика рассматривает внешнюю сторону механического движения независимо от причин, вызвавших его. Это не что иное, как геометрия в четырехмерном пространстве, где время играет роль четвертого измерения.

Если известно положение движущейся точки в каждый момент времени, то кинематика позволяет построить ее траекторию и определить такие кинематические параметры, как скорость или ускорение.

Динамика исследует общий случай механического движения ТТ с учетом причин, вызвавших его.

Нетрудно догадаться, что при изучении ТМ нас, прежде всего, будет интересовать статика.

Высокая степень абстракции модели абсолютно твердого тела позволяет применять в ТМ, как и в математике, аксиоматико-дедуктивный метод исследования. Это означает, что ТМ (и в частности статика) подобно геометрии построена на системе аксиом, сформулированных Ньютоном, которые играют в механике ту же роль, что и аксиомы Евклида в геометрии.

Таким образом, изучение ТМ помимо решения основной задачи способствует формированию рационального логического мышления.

Остается ответить на вопрос, зачем нужно изучать теоретическую механику архитектору? В значительной мере ответ на этот вопрос уже дан в предисловии к настоящему пособию. В дополнение к этому отметим, что задачей архитектурного проектирования является организация окружающего пространства с учетом:

- функциональных требований,

- законов физики и механики,

- опыта проектирования,

- эстетических концепций,

- экономичности

и ряда других требований.

Знание основных законов строительной механики является необходимым условием проектирования реальных и рациональных сооружений. Их учет позволяет уже на начальной стадии разработки проекта исключить заведомо нереализуемые варианты.

В прошлом незнание этих законов архитекторы могли компенсировать только учетом опыта проектирования и своей интуицией, при этом принятие новых конструктивных решений сопровождалось повышенным риском.

Сегодня такой метод проб и ошибок был бы слишком дорогим и неоправданным, поскольку расширение наших знаний в области строительной механики и появление автоматизированных систем проектирования позволяют архитектору в полной мере реализовать свой творческий потенциал.

Основные понятия статики

Прежде, чем перейти к рассмотрению аксиом статики, поясним основные понятия, с которыми мы там встретимся.

Статика – это раздел теоретической механики, изучающий условия равновесия систем сил и методы замены этих систем эквивалентными.

Сила – векторная величина, характеризующая воздействие на тело другого материального объекта. Сила определяется тремя факторами:

- точкой приложения,

- линией действия или направлением,

- модулем или величиной.

Системой называется совокупность сил, приложенных к одному твердому телу.

Эквивалентными называются системы сил, оказывающие на тело одинаковое воздействие.

Условие эквивалентности систем сил будем записывать в виде:

(P1, P2, ..., Pm) ~ (F1, F2, …, Fn).

Равнодействующей называется сила, эквивалентная системе сил:

R ~ (R) ~ (P1, P2, …, Pn).

Уравновешенной называется система сил, равнодействующая которой существует и равна нулю:

(P1, P2, ... , Pn) ~ 0.

Уравновешивающей называется сила, равная и противоположная по направлению равнодействующей.

Все тела в механике делятся на свободные и несвободные.

Свободное тело может перемещаться в пространстве в любом направлении.

Несвободным называется тело, перемещения которого ограничены наложенными на него связями, то есть другими телами, ограничивающими свободу перемещений первого тела.

Все силы в механике делятся на активные и реакции связей или реактивные.

Последние могут появляться только в ответ на действие активных сил.

Отметим, что реакция связи направлена в сторону, противоположную тому направлению, куда тело не может перемещаться вследствие наложенной на него связи.

ПРИМЕЧАНИЯ:

1. В соответствии с приведенным определением сила является точечным вектором в отличие от векторов в математике, где векторы являются свободными.

2. Как обычно, здесь и в дальнейшем для обозначения векторных величин мы будем применять полужирный шрифт.

3. Понятия «линия действия» и «направление» близки, но не тождественны. Очевидно, что по линии действия можно определить направление с точностью до противоположного. Аналогично связаны понятия «модуль» и «величина» для вектора.

Аксиомы статики

Система аксиом статики, о которой мы уже упоминали, была сформулирована И.Ньютоном в 1687 г. в его работе «Математические основы натуральной философии». Часть этих аксиом известна из школьного курса физики как законы Ньютона, хотя первый из них – закон инерции был сформулирован еще Г.Галилеем.

1. Аксиома инерции. Под действием уравновешенной системы сил тело движется прямолинейно и равномерно или находится в состоянии покоя.

2.Аксиома равновесия системы двух сил. Система двух сил уравновешена в том и только в том случае, если эти силы:

- действуют по одной прямой, соединяющей точки их приложения;

- равны по модулю;

- направлены в противоположные стороны (Рис.1.2).

Отметим, в частности, что из условия: (Р1 , Р2) ~ 0 следует, что P1 = - P2.

Предмет теоретической механики - student2.ru

3.Аксиома присоединения или исключения уравновешенной системы сил. Действие системы сил на тело не изменится, если к ней присоединить (исключить из нее) уравновешенную систему сил.

Следствием этой аксиомы является следующая

Теорема 1.1. Действие силы на ТТ не изменится, если эту силу перенести вдоль линии действия в любую точку этого тела.

Формулировка теоремы означает, что сила Р, приложенная в точке А твердого тела, эквивалентна силе Р¢ , приложенной в точке В того же тела и лежащей на линии действия силы Р. При этом вектор Р равен вектору Р¢ : Р = Р¢ (Рис.1.3а, в).

Предмет теоретической механики - student2.ru

Для доказательства присоединим к системе, состоящей из единственной силы Р , уравновешенную систему сил, приложенных в точке В : (Р¢, Р¢¢ ) ~ 0, выбрав Р¢ = Р = - Р¢¢ (Рис.1.3б).

Тогда в силу аксиом 2 и 3:

(Р ) ~ (Р,(Р¢, Р¢¢ )) ~ ((Р, Р¢¢ ), Р¢ ) ~ (Р¢ ),

поскольку силы (Р, Р¢¢ ) также образуют уравновешенную систему. Теорема доказана.

4.Аксиома параллелограмма. Равнодействующая двух пересекающихся сил приложена в точке пересечения их линий действия и изображается диагональю параллелограмма, построенного на этих силах как на сторонах.

Отметим, что математически рассмотренная процедура определения равнодействующей соответствует нахождению суммы векторов (Рис.1.4):

(P1, P2) ~ R ð R = P1 + P2 . Предмет теоретической механики - student2.ru

Для определения модуля равнодействующей возведем последнее выражение в квадрат:

½R½2=R2 = (P1 + P2 )2 = P12 + P22 + 2 (P1 × P2) = P12 + P22 + 2 P1 P2 cos (P1, P2),

откуда получим искомое выражение:

________________

R = Ö P12 + P22 + 2 P1 P2 cos a ,

где a - угол между векторами P1 и P2.

Построение параллелограмма можно, очевидно, заменить построением силового треугольника Oab.

5.Аксиома действия и противодействия. Два тела взаимодействуют с силамиP1 и P2, равными по величине и противоположными по направлению:

P1 = - P2.

Отметим, что эти силы в отличие от сил, о которых идет речь в аксиоме 2, системы не образуют, поскольку приложены к разным телам.

6.Аксиома отвердевания. Равновесие деформируемого тела не нарушится, если его считать абсолютно твердым.

Эта аксиома позволяет рассматривать равновесие не только абсолютно твердых, но также деформируемых тел и даже жидкости. Например – в гидростатике.

7.Аксиома освобождаемости от связей. Несвободное тело можно считать свободным, если вместе с активными силами приложить к нему реакции отброшенных связей.

Отметим, что во всех предыдущих аксиомах рассматривались свободные тела. Соответственно для свободных тел впоследствии будут получены условия равновесия и теоремы статики. В то же время все окружающие нас строительные конструкции и сооружения представляют собой примеры тел несвободных. Отсюда понятна значимость последней аксиомы, которая позволяет от несвободных тел переходить к свободным, а также необходимость умения определять реакции этих связей.

ПРИМЕЧАНИЯ:

1. Аксиома 1 справедлива только для частного случая ТТ – материальной точки.

2. На основании следствия из аксиомы 3 сила в ТМ является не точечным, а скользящим вектором, поэтому на практике точка ТТ, к которой приложена сила, может совпадать как с началом, так и с концом этого вектора.

3. С помощью аксиомы 4 можно выполнить и обратную операцию: разложить силу на две составляющие по двум заранее выбранным направлениям.

4. Здесь и далее, если это не вызывает недоразумения, мы применяем обычное начертание шрифта для обозначения как модуля вектора силы, так и его величины: P =±½P½.

Простейшие типы связей

1. Идеально гладкая поверхность. Рассмотрим тело, которое может перемещаться без трения по гладкой горизонтальной поверхности (Рис.1.5а). Пусть в качестве активной силы выступает сила веса - Р, приложенная в его центре тяжести. Реакция связи N представлена силой, распределенной по плоскости нижней грани этого тела, и ее можно считать приложенной в центре этой грани.

Предмет теоретической механики - student2.ru

Принципиально картина не меняется, если поверхность тела или связи будет гладкой, но криволинейной (Рис.1.5б).

Пусть тело в виде бруса с гладкой поверхностью опирается в точке А на идеально гладкую поверхность, а в точке В - на уступ (Рис.1.5в).

Нетрудно догадаться, что тело не сможет находиться в равновесии, если в качестве активной силы выступает его собственный вес, однако равновесие возможно, если к этому брусу приложить некоторую другую внешнюю силу F. При этом, как будет показано в следующей главе, равновесие возможно только в том случае, если линия действия этой силы проходит через точку пересечения линий действия реакций RA и RB .

Итак, по поводу этого типа связи можно сделать следующий вывод: реакция идеально гладкой поверхности приложена в точке касания и направлена по нормали к поверхности тела или связи.

2. Гибкая невесомая и нерастяжимая нить. Рассмотрим тело, которое подвешено на двух таких нитях и находится в равновесии под действием собственного веса и реакций нитей, прикрепленных к телу в точках А и В (Рис.1.6).

Реакция связи равна силе натяжения нити, она направлена вдоль нити и от тела, которое эта нить удерживает.

3. Жесткий невесомый прямолинейный стержень. Реакция направлена вдоль стержня, который, в отличие от нити, может воспринимать как растягивающие (SB), так и сжимающие (SA) усилия (Рис.1.7).

4. Подвижная опора. Допускает перемещение закрепленным таким образом точки тела только вдоль опорной плоскости (Рис.1.8а).

Реакция направлена перпендикулярно заштрихованной опорной площадке.

В учебной литературе этот вид связи также называют подвижным цилиндрическим шарниром.

Предмет теоретической механики - student2.ru

Помимо стандартного обозначения, предусмотренного ГОСТом, на схемах эту связь изображают так, как показано на рис. 1.8б.

Предмет теоретической механики - student2.ru

Отметим, что четыре рассмотренные связи имеют одну общую особенность: соответствующие им реакции известны по направлению и неизвестны по величине. То есть с точки зрения алгебры каждая из этих реакций соответствует только одному неизвестному.

5. Неподвижная опора. Препятствует перемещению закрепленной таким образом точки тела в горизонтальном и вертикальном направлениях. Это означает, что в общем случае реакция RAтакой связи неизвестна по величине и по направлению. В качестве неизвестных при ее определении можно выбрать модуль реакции -½RA½и угол j, который она образует с осью Ox , либо проекции вектора RA на оси координат: RAX , RAY (Рис.1.9а).

Эта связь допускает поворот тела вокруг рассматриваемой точки, поэтому в учебной литературе эту связь также называют неподвижным цилиндрическим шарниром.

Помимо стандартного обозначения, предусмотренного ГОСТом, на схемах она изображается так, как показано на рис. 1.9б.

Предмет теоретической механики - student2.ru

6. Сферический шарнир. В отличие от цилиндрического шарнира не допускает перемещения закрепленной таким образом точки тела в трех взаимно перпендикулярных направлениях. В качестве неизвестных при ее определении выбирают проекции этой реакции на оси координат: RAX , RAY , RAZ (Рис.1.10).

Предмет теоретической механики - student2.ru

Рассмотренными в этом параграфе шестью типами связей мы и ограничимся. Другие связи будут рассмотрены по мере необходимости.

ПРИМЕЧАНИЯ:

1. В соответствии с аксиомой 7 на схемах нужно изображать одно из двух: либо связи, либо реакции отброшенных связей. На практике реакции связей нередко изображают одновременно со связями.

2. Связи, как и другие понятия, встречающиеся в аксиомах, являются абстракциями, весьма условно отражающими свойства реальных объектов. Например, рассмотренная выше гибкая невесомая нить может быть моделью подвесных и вантовых систем, у которых масса погонного метра троса составляет десятки и сотни килограммов. Однако усилия, возникающие в таких тросах, во столько раз больше их собственного веса, что при расчете последним можно пренебречь, считая их невесомыми.

Наши рекомендации