Многоэтапное принятие решений.
Мы рассмотрели различные критерии принятия решений в условиях неопределённости. На практике, в таких задачах как, проектирование изделий, программ, мы можем столкнуться с принятием последовательных решений. Особое значение вот такие многоэтапные решения имеют при создании автоматизированных экспертных систем. Рассмотрим вопрос оптимизации многоэтапных решений. Многоэтапность приводит к тому, что схема принятия решения может быть представлена в виде дерева, в каждой вершине которого осуществляется либо:
1) Сознательный выбор между двумя и более альтернативами
2) Случайный переход из одной ветви в другую под воздействием внешних факторов
Рассмотрим пример оптимизации многоэтапных решений на примере экономической задачи.
Пример: фирма может принять решение о строительстве крупного или мелкого предприятия. Строительство крупного предприятия относительно дешевле, в случае если будет высокий спрос на производимые товары, мелкое предприятие можно расширить. Деятельность фирмы рассматривается в течение десяти лет, причём в случае строительства мелкого предприятия, вопрос о расширении будет рассматриваться через два года. Спрос заранее неизвестен.
Введём градацию спроса: высокий и низкий . Затраты и доходы: строительство крупного предприятия – 5 млн. $; строительство мелкого – 1 млн. $; затраты на расширение – 4,2 млн. $; крупное предприятие при высоком спросе даёт доход – 1 млн. $ ежегодно, а при низком – 300 тыс. $; мелкое предприятие при высоком спросе – 250 тыс. $ ежегодно, при низком – 200 тыс. $; расширенное предприятие в случае высокого спроса приносит доход – 900 тыс. $ в год, и при низком спросе – 200 тыс. $; мелкое предприятие без расширения при высоком спросе на производимый продукт приносит в течение двух лет по 250 тыс. $ ежегодно, а в течение следующих восьми по 200 тыс. $. Нарисуем наше дерево.
Применим для решения этой задачи метод динамического программирования. В качестве критерия применим средний выигрыш, т. .е МО выигрыша. Сама величина критерия равна доходу без затрат на строительство. Начнём с последнего четвёртого шага: подсчитаем средний выигрыш:
Исходя из полученного результата, оптимальным будем сразу строить крупное предприятие.
Задача о секретарше.
Директор собирается принять на работу секретаршу. Прежний опыт делит секретарш на три категории: отличных (3 балла), хороших (2 балла) и посредственных (1 балл). Анализ учебных заведений по подготовке секретарш даёт статистику выпускниц заведений: вероятность взять на работу отличную секретаршу – 0,2, хорошую – 0,5, посредственную – 0,3. директор может испытать только трёх претенденток, причём в случае отказа директора кандидат убывает на другую работу. Построим дерево решений.
Начнём искать оптимальное решение с последнего шага. Определим МО «выигрыша» секретарши, если мы испытываем трёх кандидаток:
Во втором испытании, если попалась хорошая секретарша, надо остановиться, а в первом испытании, надо остановиться только если попалась отличная, а в третье испытании берём любую. Найдём средний оптимальный выигрыш после всех испытаний: