Геометрическая оптика

Основная статья: Геометрическая оптика

Геометрическая оптика или оптика луча, описывает распространение света термином луч. Работы Гюйгенса «Волновая теория света», которые были написаны под влиянием фундаментальных работ Ньютона, и вошли потом в «Оптику», оказали большое влияние на современников. Действительно, будучи приверженцем теории цветов Гука, он после работ Ньютона, восхищаясь их экспериментальной стороной, но не разделяя его теоретической интерпретации, пришёл к выводу, что «явление окрашивания остаётся ещё весьма таинственным из-за трудности объяснения этого разнообразия цветов с помощью какого-либо физического механизма». Поэтому он счёл наиболее целесообразным вообще не рассматривать вопроса о цветах в своём трактате.

В своем небольшом трактате первым он рассмотрел прямолинейное распространение света, во второй части — отражение, в третьей — преломление, в четвёртой — атмосферную рефракцию, в пятой — двойное лучепреломление и в шестой — формы линз.

Неудовлетворительное объяснение прямолинейного распространения света Гюйгенс возместил блестящим объяснением с помощью своего механизма частичного отражения, преломления и полного внутреннего отражения — явлений, интерпретация которых вынудила Ньютона усложнять свою теорию, нагромождая одну теорию на другую. По существу, эти объяснения Гюйгенса и сейчас приводятся во всех учебниках. Новая теория обладала также тем преимуществом, что для объяснения преломления она в соответствии со здравым смыслом требовала меньшей скорости в более плотной среде.

«Луч» в геометрической оптике — абстрактный геометрический объект, перпендикулярный фронту импульса фактических оптических волн. Геометрическая оптика описывает правила прохождения лучей через оптическую систему.

Приняв это абстрактное понятие и связанные с ним правила, мы существенно упрощаем задачу оптики, но не в состоянии объяснить много важных оптических эффектов, например дифракцию и поляризацию.

[править]Параксиальное приближение

Основная статья: Параксиальное приближение

Следующее упрощение в геометрической оптике — параксиальное приближение, или «приближение малых углов». Математически поведение луча становится линейным, позволяя представить оптические компоненты простыми матрицами. Применение методов Гауссовской оптики позволяет найти свойства первого порядка оптических систем.

Гауссовское распространение луча — расширение параксиальной оптики, описывающее более точную модель поведения лучей. Используя параксиальное приближение и явление дифракции, данный набор методов описывает расширение светового пучка с расстоянием и минимальный размер светового пятна, в которое может быть сосредоточен световой пучок. Тем самым эта модель является промежуточной между геометрической и физической оптикой.

[править]Физическая оптика

Основная статья: Физическая оптика

Геометрическая оптика - student2.ru

Геометрическая оптика - student2.ru

Наглядное изображение дисперсии света в призме

Физическая оптика или оптика волны основывается на принципе Гюйгенса и моделирует распространение сложных фронтов импульса через оптические системы, включая и амплитуду и фазу волны. Этот раздел оптики объясняет дифракцию, интерференцию, эффекты поляризации,аберрацию

и природу других сложных эффектов.

В этом разделе оптики также используются приближения, а не полная электромагнитная модель распространения света. Однако в простых случаях, а по мере роста доступных вычислительных мощностей и в более сложных, становится возможным полный расчёт по точной теории.

2.Частота излучения некторого источника равна 4х10**(14)Гц. Найти длину волны излучения

Скорость света/частоту=длина волны

8*10^8/4*10^14=2*10^-6 м Это Ик диапазон

3. Почему мы не видим в радиочастотном диапазоне?

Тип колбочек обозначение Воспринимаемые длины волн Максимум чувствительности[4][5]
S β 400—500 нм 420—440 нм
M γ 450—630 нм 534—555 нм
L ρ 500—700 нм 564—580 нм

Наши рекомендации