Возможности и эффективность моделирования систем на ЭВМ
ЛЕКЦИЯ 4
« Классификация видов моделирования систем»
В основе моделирования лежит теория подобия, которая утверждает, что абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделировании абсолютное подобие не имеет места и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта.
Классификационные признаки. В качестве одного из первых признаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на полные, неполные и приближенные.
В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве.
Для неполного моделирования характерно неполное подобие модели изучаемому объекту.
В основе приближенного моделирования лежит приближенное подобие, при котором некоторые стороны функционирования реального объекта не моделируются совсем.
Классификация видов моделирования систем S приведена на рис. 1.
В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные.
Детерминированное моделирование отображает детерминированные процессы, т. е. процессы, в которых предполагается отсутствие всяких случайных воздействий.
Cтохастическое моделирование отображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса и оцениваются средние характеристики, т. е. набор однородных реализаций.
Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделированиеотражает поведение объекта во времени.
Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.
В зависимости от формы представления объекта (системы S) можно выделить мысленное и реальное моделирование.
Мысленное моделирование часто является единственным способом моделирования объектов, которые либо практически нереализуемы в заданном интервале времени, либо существуют вне условий, возможных для их физического создания. Например, на базе мысленного моделирования могут быть проанализированы многие ситуации микромира, которые не поддаются физическому эксперименту. Мысленное моделирование может быть реализовано в виде наглядного, символического и математического. При наглядном моделировании, на базе представлений человека о реальных объектах создаются различные наглядные модели, отображающие явления и процессы, протекающие в объекте. В основу гипотетического моделирования исследователем закладывается некоторая гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта. Гипотетическое моделирование используется, когда знаний об объекте недостаточно для построения формальных моделей. Аналоговое моделирование основывается на применении аналогий различных уровней. Наивысшим уровнем является полная аналогия, имеющая место только для достаточно простых объектов. С усложнением объекта используют аналогии последующих уровней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта. Существенное место при мысленном наглядном моделировании занимает макетирование. Мысленный макет может применяться в случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшествовать проведению других видов моделирования. В основе построения мысленных макетов также лежат аналогии, однако обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте. Если ввести условное обозначение отдельных понятий, т. е. знаки, а также определенные операции между этими знаками, то можно реализовать знаковое моделирование и с помощью знаков отображать набор понятий — составлять отдельные цепочки из слов и предложений. Используя операции объединения, пересечения и дополнения теории множеств, можно в отдельных символах дать описание какого-то реального объекта. В основе языкового моделирования лежит некоторый тезаурус. Последний образуется из набора входящих понятий, причем этот набор должен быть фиксированным. Следует отметить, что между тезаурусом и обычным словарем имеются принципиальные различия. Тезаурус — словарь, который очищен от неоднозначности, т. е. в нем каждому слову может соответствовать лишь единственное понятие, хотя в обычном словаре одному слову могут соответствовать несколько понятий.
Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков или символов.
|
Математическое моделирование. Для исследования характеристик процесса функционирования любой системы S математическими методами, включая и машинные, должна быть проведена формализация этого процесса, т. е. построена математическая модель.
Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближения к действительности. Математическое моделирование для исследования характеристик процесса функционирования систем можно разделить на аналитическое, имитационное и комбинированное.
Для аналитического моделированияхарактерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегро-дифференциальных, конечно-разностных и т. п.) или логических условий. Аналитическая модель может быть исследована следующими методами:
аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик;
численным, когда, не умея решать уравнений в общем виде, стремятся получить числовые результаты при конкретных начальных данных;
качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, оценить устойчивость решения).
Наиболее полное исследование процесса функционирования системы можно провести, если известны явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными системы S. Однако такие зависимости удается получить только для сравнительно простых систем. При усложнении систем исследование их аналитическим методом наталкивается на значительные трудности, которые часто бывают непреодолимыми. Поэтому, желая использовать аналитический метод, в этом случае идут на существенное упрощение первоначальной модели, чтобы иметь возможность изучить хотя бы общие свойства системы. Такое исследование на упрощенной модели аналитическим методом помогает получить ориентировочные результаты для определения более точных оценок другими методами. Численный метод позволяет исследовать по сравнению с аналитическим методом более широкий класс систем, но при этом полученные решения носят частный характер. Численный метод особенно эффективен при использовании ЭВМ.
В отдельных случаях исследования системы могут удовлетворить и те выводы, которые можно сделать при использовании качественного метода анализа математической модели. Такие качественные методы широко используются, например, в теории автоматического управления для оценки эффективности различных вариантов систем управления.
В настоящее время распространены методы машинной реализации исследования характеристик процесса функционирования больших систем. Для реализации математической модели на ЭВМ необходимо построить соответствующий моделирующий алгоритм.
При имитационном моделировании реализующий модель алгоритм воспроизводит процесс функционирования системы S во времени, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики системы S.
Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и др., которые часто создают трудности при аналитических исследованиях. В настоящее время имитационное моделирование — наиболее эффективный метод исследования больших систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапе ее проектирования.
Метод имитационного моделирования позволяет решать задачи анализа больших систем S, включая задачи оценки: вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения различных параметров системы. Имитационное моделирование может быть положено также в основу структурного, алгоритмического и параметрического синтеза больших систем, когда требуется создать систему, с заданными характеристиками при определенных ограничениях, которая является оптимальной по некоторым критериям оценки эффективности.
При решении задач машинного синтеза систем на основе их имитационных моделей помимо разработки моделирующих алгоритмов для анализа фиксированной системы необходимо также разработать алгоритмы поиска оптимального варианта системы. Далее в методологии машинного моделирования будем различать два основных раздела: статику и динамику,— основным содержанием которых являются соответственно вопросы анализа и синтеза систем, заданных моделирующими алгоритмами.
Комбинированное (аналитико-имитациоиное)моделирование при анализе и синтезе систем позволяет объединить достоинства аналитического и имитационного моделирования. При построении комбинированных моделей проводится предварительная декомпозиция процесса функционирования объекта на составляющие подпроцессы и для тех из них, где это возможно, используются аналитические модели, а для остальных подпроцессов строятся имитационные модели. Такой комбинированный подход позволяет охватить качественно новые классы систем, которые не могут быть исследованы с использованием только аналитического и имитационного моделирования в отдельности.
Другие виды моделирования. При реальном моделировании используется возможность исследования различных характеристик либо на реальном объекте целиком, либо на его части. Такие исследования могут проводиться как на объектах, работающих в нормальных режимах, так и при организации специальных режимов для оценки интересующих исследователя характеристик (при других значениях переменных и параметров, в другом масштабе времени и т. д.). Реальное моделирование является наиболее адекватным, но при этом его возможности с учетом особенностей реальных объектов ограничены. Например, проведение реального моделирования АСУ предприятием потребует, во-первых, создания такой АСУ, а во-вторых, проведения экспериментов с управляемым объектом, т. е. предприятием, что в большинстве случаев невозможно. Рассмотрим разновидности реального моделирования.
Натурным моделированием называют проведение исследования на реальном объекте с последующей обработкой результатов эксперимента на основе теории подобия. При функционировании объекта в соответствии с поставленной целью удается выявить закономерности протекания реального процесса. Надо отметить, что такие разновидности натурного эксперимента, как производственный эксперимент и комплексные испытания, обладают высокой степенью достоверности.
С развитием техники и проникновением в глубь процессов, протекающих в реальных системах, возрастает техническая оснащенность современного научного эксперимента. Он характеризуется широким использованием средств автоматизации проведения, применением весьма разнообразных средств обработки информации, возможностью вмешательства человека в процесс проведения эксперимента, и в соответствии с этим появилось новое научное направление — автоматизация научных экспериментов.
Отличие эксперимента от реального протекания процесса заключается в том, что в нем могут появиться отдельные критические ситуации и определяться границы устойчивости процесса. В ходе эксперимента вводятся новые факторы и возмущающие воздействия в процессе функционирования объекта. Одна из разновидностей эксперимента — комплексные испытания, которые также можно отнести к натурному моделированию, когда вследствие повторения испытаний изделий выявляются общие закономерности о надежности этих изделий, о характеристиках качества и т. д. В этом случае моделирование осуществляется путем обработки и обобщения сведений, проходящих в группе однородных явлений. Наряду со специально организованными испытаниями возможна реализация натурного моделирования путем обобщения опыта, накопленного в ходе производственного процесса, т. е. можно говорить о производственном эксперименте. Здесь на базе теории подобия обрабатывают статистический материал по производственному процессу и получают его обобщенные характеристики.
Другим видом реального моделирования являетсяфизическое, отличающееся от натурного тем, что исследование проводится на установках, которые сохраняют природу явлений и обладают физическим подобием. В процессе физического моделирования задаются некоторые характеристики внешней среды и исследуется поведение либо реального объекта, либо его модели при заданных или создаваемых искусственно воздействиях внешней среды. Физическое моделирование может протекать в реальном и нереальном (псевдореальном) масштабах времени, а также может рассматриваться без учета времени. В последнем случае изучению подлежат так называемые «замороженные» процессы, которые фиксируются в некоторый момент времени. Наибольшие сложность и интерес с точки зрения верности получаемых результатов представляет физическое моделирование в реальном масштабе времени.
С точки зрения математического описания объекта и в зависимости от его характера модели можно разделить на модели аналоговые (непрерывные), цифровые (дискретные) и аналого-цифровые (комбинированные).
Под аналоговой моделью понимается модель, которая описывается уравнениями, связывающими непрерывные величины.
Под цифровой понимают модель, которая описывается уравнениями, связывающими дискретные величины, представленные в цифровом виде.
Под аналого-цифровой понимается модель, которая может быть описана уравнениями, связывающими непрерывные и дискретные величины.
Особое место в моделировании занимает кибернетическое моделирование, в котором отсутствует непосредственное подобие физических процессов, происходящих в моделях, реальным процессам. В этом случае стремятся отобразить лишь некоторую функцию и рассматривают реальный объект как «черный ящик», имеющий ряд входов и выходов, и моделируют некоторые связи между выходами и входами. Чаще всего при использовании кибернетических моделей проводят анализ поведенческой стороны объекта при различных воздействиях внешней среды. Таким образом, в основе кибернетических моделей лежит отражение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта. Для построения имитационной модели в этом случае необходимо выделить исследуемую функцию реального объекта, попытаться формализовать эту функцию в виде некоторых операторов связи между входом и выходом и воспроизвести на имитационной модели данную функцию, причем на базе совершенно иных математических соотношений и, естественно, иной физической реализации процесса.
ЛЕКЦИЯ 5
«ВОЗМОЖНОСТИ И ЭФФЕКТИВНОСТЬ МОДЕЛИРОВАНИЯ СИСТЕМ НА ЗВМ»
Обеспечение требуемых показателей качества функционирования больших систем, связанное с необходимостью изучения протекания стохастических процессов в исследуемых и проектируемых системах S, позволяет проводить комплекс теоретических и экспериментальных исследований, взаимно дополняющих друг друга. Эффективность экспериментальных исследований сложных систем оказывается крайне низкой, поскольку проведение натурных экспериментов с реальной системой либо требует больших материальных затрат и значительного времени, либо вообще практически невозможно (например, на этапе проектирования, когда реальная система отсутствует). Эффективность теоретических исследований с практической точки зрения в полной мере проявляется лишь тогда, когда их результаты с требуемой степенью точности и достоверности могут быть представлены в виде аналитических соотношений или моделирующих алгоритмов, пригодных для получения соответствующих характеристик процесса функционирования исследуемых систем.
1.Средства моделирования систем.
Появление современных ЭВМ было решающим условием широкого внедрения аналитических методов в исследование сложных систем. Стало казаться, что модели и методы, например математического программирования, станут практическим инструментом решения задач управления в больших системах. Действительно, были достигнуты значительные успехи и создании новых математических методов решения этих задач, однако математическое программирование так и не стало практическим инструментом исследования процесса функционирования сложных систем, так как модели математического программирования оказались слишком грубыми и несовершенными для их эффективного использования. Необходимость учета стохастических свойств системы, недетерминированности исходной информации, наличия корреляционных связей между большим числом переменных и параметров, характеризующих процессы в системах, приводят к построению сложных математических моделей, которые не могут быть применены в инженерной практике при исследовании таких систем аналитическим методом. Пригодные для практических расчетов аналитические соотношения удается получить лишь при упрощающих предположениях, обычно существенно искажающих фактическую картину исследуемого процесса. Поэтому в последнее время все ощутимее потребность в разработке методов, которые дали бы возможность уже на этапе проектирования систем исследовать более адекватные модели. Указанные обстоятельства приводят к тому, что при исследовании больших систем все шире применяют методы имитационного моделирования.
Наиболее конструктивным средством решения инженерных задач на базе моделирования в настоящее время стали ЭВМ. Современные ЭВМ можно разделить на две группы: универсальные, прежде всего предназначенные для выполнения расчетных работ, и управляющие, позволяющие проводить не только расчетные работы, но прежде всего приспособленные для управления объектами в реальном масштабе времени. Управляющие ЭВМ могут быть использованы как для управления технологическим процессом, экспериментом, так и для реализации различных имитационных моделей.
В зависимости от того, удается ли построить достаточно точную математическую модель реального процесса, или вследствие сложности объекта не удается проникнуть в глубь функциональных связей реального объекта и описать их какими-то аналитическими соотношениями, можно рассматривать два основных пути использования ЭВМ:
как средства расчета по полученным аналитическим моделям и
как средства имитационного моделирования.
Для известной аналитической модели, полагая, что она достаточно точно отображает исследуемую сторону функционирования реального физического объекта, перед вычислительной машиной стоит задача расчета характеристик системы по каким-либо математическим соотношениям при подстановке числовых значений. В этом направлении вычислительные машины обладают возможностями, практически зависящими от порядка решаемого уравнения и от требований к скорости решения, причем могут быть использованы как ЭВМ, так и АВМ.
При использовании ЭВМ разрабатывается алгоритм расчета характеристик, в соответствии с которым составляются программы (либо генерируются с помощью пакета прикладных программ), дающие возможность осуществлять расчеты по требуемым аналитическим соотношениям. Основная задача исследователя заключается в том, чтобы попытаться описать поведение реального объекта одной из известных математических моделей.
Использование АВМ, с одной стороны, ускоряет для достаточно простых случаев процесс решения задачи, с другой стороны, могут возникать погрешности, обусловленные наличием дрейфа параметров отдельных блоков, входящих в АВМ, ограниченной точностью, с которой могут быть заданы параметры, вводимые в машину, а также неисправностями технических средств и т. д.
Перспективно сочетание ЭВМ и АВМ, т. е. использование гибридных средств вычислительной техники — гибридных вычислительных комплексов (ГВК), что в ряде случаев значительно ускоряет процесс исследования.
В ГВК удается сочетать высокую скорость функционирования аналоговых средств и высокую точность расчетов на базе цифровых средств вычислительной техники. Одновременно удается за счет наличия цифровых устройств обеспечить контроль проведения операций. Опыт использования вычислительной техники в задачах моделирования показывает, что с усложнением объекта большую эффективность по скорости решения и по стоимости выполнения операций дает использование гибридной техники.
Конкретным техническим средством воплощения имитационной модели могут быть ЭВМ, АВМ и ГВК. Если использование аналоговой техники ускоряет получение конечных результатов, сохраняя некоторую наглядность протекания реального процесса, то применение средств цифровой техники позволяет осуществить контроль за реализацией модели, создать программы по обработке и хранению результатов моделирования, обеспечить эффективный диалог исследователя с моделью.
Обычно модель строится по иерархическому принципу, когда последовательно анализируются отдельные стороны функционирования объекта и при перемещении центра внимания исследователя рассмотренные ранее подсистемы переходят во внешнюю среду. Иерархическая структура моделей может раскрывать и ту последовательность, в которой изучается реальный объект, а именно последовательность перехода от структурного (топологического) уровня к функциональному (алгоритмическому) и от функционального к параметрическому.
Результат моделирования в значительной степени зависит от адекватности исходной концептуальной (описательной) модели, от полученной степени подобия описания реального объекта, числа реализаций модели и многих других факторов. В ряде случаев сложность объекта не позволяет не только построить математическую модель объекта, но и дать достаточно близкое кибернетическое описание, и перспективным здесь является выделение наиболее трудно поддающейся математическому описанию части объекта и включение этой реальной части физического объекта в имитационную модель. Тогда модель реализуется, с одной стороны, на базе средств вычислительной техники, а с другой — имеется реальная часть объекта. Это значительно расширяет возможности и повышает достоверность результатов моделирования.
Моделирующая система реализуется на ЭВМ и позволяет исследовать модель М, задаваемую в виде определенной совокупности отдельных блочных моделей и связей между ними в их взаимодействии в пространстве и времени при реализации какого-либо процесса. Можно выделить три основные группы блоков:
блоки, характеризующие моделируемый процесс функционирования системы S;
блоки, отображающие внешнюю среду Е и ее воздействие на реализуемый процесс;
блоки, играющие служебную вспомогательную роль, обеспечивая взаимодействие первых двух, а также выполняющие дополнительные функции по получению и обработке результатов моделирования.
Кроме того, моделирующая система характеризуется набором переменных, с помощью которых удается управлять изучаемым процессом, и набором начальных условий, когда можно изменять условия проведения машинного эксперимента.
Таким образом, моделирующая система есть средство проведения машинного эксперимента, причем эксперимент может ставиться многократно, заранее планироваться, могут определяться условия его проведения. Необходимо при этом выбрать методику оценки адекватности получаемых результатов и автоматизировать как процессы получения, так и процессы обработки результатов в ходе машинного эксперимента.
2.Обеспечение моделирования.
Моделирующая система характеризуется наличием математического, программного, информационного, технического, эргономического и других видов обеспечения.
Математическое обеспечение моделирующей системы включает в себя совокупность математических соотношений, описывающих поведение реального объекта, совокупность алгоритмов, обеспечивающих как подготовку, так и работу с моделью. Сюда могут быть отнесены алгоритмы: ввода исходных данных, имитации, вывода, обработки.
Программное обеспечение по своему содержанию включает в себя совокупность программ: планирования эксперимента, модели системы, проведения эксперимента, обработки и интерпретации результатов. Кроме того, программное обеспечение должно обеспечивать синхронизацию процессов в модели, т. е. необходим блок, организующий псевдопараллельное выполнение процессов в модели. Машинные эксперименты с моделями не могут проходить без хорошо разработанного и реализованного информационного обеспечения.
Информационное обеспечение включает в себя средства и технологию организации и реорганизации базы данных моделирования, методы логической и физической организации массивов, формы документов, описывающих процесс моделирования и его результаты. Информационное обеспечение является наименее разработанной частью, поскольку только в настоящее время наблюдается переход к созданию сложных моделей и разрабатывается методология их использования при анализе и синтезе сложных систем с использованием концепции базы данных и знаний.
Техническое обеспечение включает в себя прежде всего средства вычислительной техники, связи и обмена между оператором и сетью ЭВМ, ввода и вывода информации, управления проведением эксперимента.
Эргономическое обеспечение представляет собой совокупность научных и прикладных методик и методов, а также нормативно-технических и организационно-методических документов, используемых на всех этапах взаимодействия человека-экспериментатора с инструментальными средствами (ЭВМ, гибридными комплексами и т. д.). Эти документы, используемые на всех стадиях разработки и эксплуатации моделирующих систем и их элементов, предназначены для формирования и поддержания эргономического качества путем обоснования и выбора организационно-проектных решений, которые создают оптимальные условия для высокоэффективной деятельности человека во взаимодействии с моделирующим комплексом.
Таким образом, моделирующая система может рассматриваться как машинный аналог сложного реального процесса. Она позволяет заменить эксперимент с реальным процессом функционирования системы экспериментом с математической моделью этого процесса в ЭВМ. В настоящее время имитационные эксперименты широко используют в практике проектирования сложных систем, когда реальный эксперимент невозможен.
Возможности и эффективность моделирования систем на ЭВМ
Несмотря на то что имитационное моделирование на ЭВМ является мощным инструментом исследования систем, его применение рационально не во всех случаях. Известно множество задач, решаемых более эффективно другими методами. Вместе с тем для большого класса задач исследования и проектирования систем метод имитационного моделирования наиболее приемлем. Правильное его употребление возможно лишь в случае четкого понимания сущности метода имитационного моделирования и условий его использования в практике исследования реальных систем при учете особенностей конкретных систем и возможностей их исследования различными методами.
В качестве основных критериев целесообразности применения метода имитационного моделирования на ЭВМ можно указать следующие: отсутствие или неприемлемость аналитических, численных и качественных методов решения поставленной задачи; наличие достаточного количества исходной информации о моделируемой системе S для обеспечения возможности построения адекватной имитационной модели; необходимость проведения на базе других возможных методов решения очень большого количества вычислений, трудно реализуемых даже с использованием ЭВМ; возможность поиска оптимального варианта системы при ее моделировании на ЭВМ.
Имитационное моделирование на ЭВМ, как и любой метод исследований, имеет достоинства и недостатки, проявляющиеся в конкретных приложениях. К числу основных достоинств метода имитационного моделирования при исследовании сложных систем можно отнести следующие: машинный эксперимент с имитационной моделью дает возможность исследовать особенности процесса функционирования системы S в любых условиях; применение ЭВМ в имитационном эксперименте существенно сокращает продолжительность испытаний по сравнению с натурным экспериментом; имитационная модель позволяет включать результаты натурных испытаний реальной системы или ее частей для проведения дальнейших исследований; имитационная модель обладает известной гибкостью варьирования структуры, алгоритмов и параметров моделируемой системы, что важно с точки зрения поиска оптимального варианта системы; имитационное моделирование сложных систем часто является единственным практически реализуемым методом исследования процесса функционирования таких систем на этапе их проектирования.
Основным недостатком, проявляющимся при машинной реализации метода имитационного моделирования, является то, что решение, полученное при анализе имитационной модели М, всегда носит частный характер, так как оно соответствует фиксированным элементам структуры, алгоритмам поведения и значениям параметров системы S, начальных условий и воздействий внешней среды Е. Поэтому для полного анализа характеристик процесса функционирования систем, а не получения только отдельной точки приходится многократно воспроизводить имитационный эксперимент, варьируя исходные данные задачи. При этом, как следствие, возникает увеличение затрат машинного времени на проведение эксперимента с имитационной моделью процесса функционирования исследуемой системы S.
Эффективность машинного моделирования. При имитационном моделировании, так же как и при любом другом методе анализа и синтеза системы S, весьма существен вопрос его эффективности. Эффективность имитационного моделирования может оцениваться рядом критериев, в том числе точностью и достоверностью результатов моделирования, временем построения и работы с моделью М, затратами машинных ресурсов (времени и памяти), стоимостью разработки и эксплуатации модели. Очевидно, наилучшей оценкой эффективности является сравнение получаемых результатов с реальным исследованием, т. е. с моделированием на реальном объекте при проведении натурного эксперимента. Поскольку это не всегда удается сделать, статистический подход позволяет с определенной степенью точности при повторяемости машинного эксперимента получить какие-то усредненные характеристики поведения системы. Существенное влияние на точность моделирования оказывает число реализаций, и в зависимости от требуемой достоверности можно оценить необходимое число реализаций воспроизводимого случайного процесса.
Существенным показателем эффективности являются затраты машинного времени. В связи с использованием ЭВМ различного типа суммарные затраты складываются из времени по вводу и выводу данных по каждому алгоритму моделирования, времени на проведение вычислительных операций, с учетом обращения к оперативной памяти и внешним устройствам, а также сложности каждого моделирующего алгоритма. Расчеты затрат машинного времени являются приближенными и могут уточняться по мере отладки программ и накопления опыта у исследователя при работе с имитационной моделью. Большое влияние на затраты машинного времени при проведении имитационных экспериментов оказывает рациональное планирование таких экспериментов. Определенное влияние на затраты машинного времени могут оказать процедуры обработки результатов моделирования, а также форма их представления.