Диффузионная теория выпрямления запорного слоя Шоттки

В диффузионной теории выпрямления запорного слоя Шоттки предполагается, что Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru Это неравенство выполняется при малой подвижности и низкой концентрации электронов и означает, что носитель заряда, проходя ОПЗ, испытывает многократные столкновения с тепловыми колебаниями атомов полупроводника. Поскольку в ОПЗ существует и градиент концентрации электронов и электрическое поле, то при записи выражения для плотности тока в этом случае необходимо учитывать как диффузионную, так и дрейфовую составляющие тока, т.е.

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (35)

где Dn - коэффициент диффузии электронов. При записи плотности тока в таком виде предполагается, что напряженность электрического поля в запорном слое мала, вследствие чего дрейфовая скорость движения электронов Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru

Для нахождения вольтамперной характеристики уравнение (35) решается при следующих граничных условиях:

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (36)

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (37)

где Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru средняя тепловая скорость электронов. Второе соотношение в граничных условиях (36) требует специального обоснования. Запишем плотность тока через разность плотностей потоков электронов Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru Из выражения (27) с учетом того, что средняя тепловая скорость электронов Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru , а Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru будем иметь

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (38)

Аналогичное выражение можно записать и для jнм , заменив концентрацию электронов на поверхности полупроводника в равновесных условиях Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru на концентрацию Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru при наличии тока через контакт. Тогда

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (39)

Отсюда получается выражение для n0 в граничных условиях (36).

Домножая обе части равенства (35) на ехр[Ф(х)/(кТ)] и принимая во внимание, что Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru , получим

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (40)

Теперь проинтегрируем соотношение (40) в пределах от 0 до d, учитывая будем иметь

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (41)

Отсюда

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (42)

Для слоя Шоттки Ф(х) задается формулой (19) и точное значение интеграла в знаменателе выражения (42) может быть получено только численным способом. Чтобы получить аналитическое выражение для вольтамперной характеристики, проведем приближенное вычисление этого интеграла. Поскольку Ф(х) быстро убывает с увеличением х.

соотношение (19), то значение рассматриваемого интеграла в основном определяется областью вблизи плоскости х = 0. С учетом этого разложим Ф(х) в ряд по х, ограничиваясь линейным приближением

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (43)

В соответствии с соотношением (20)

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (44)

После подстановки выражений для Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru в соотношение (43) получим

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (45)

Тогда

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (46)

Из соотношений (24) и (44) следует, что

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (47)

Если учесть, что запорный слой существует пока изгиб зон достаточно велик и Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru ,то

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (48)

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (49)

Подстановка равенства (49) в (42) после несложных преобразований приводит к выражению

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (50)

Если максимальная напряженность электрического поля в запорном слое настолько мала, что Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru , то в знаменателе выражения (50) вторым членом можно пренебречь. Например, для кремния при Г =300 К это неравенство выполняется, когда Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru Поскольку Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru , то выражение для вольтамперной характеристики запорного слоя при выполнении записанного выше неравенства можно представить в следующем виде:

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (51)

Из соотношений (44) и (24) видно, что

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (52)

Следовательно, плотность прямого тока по диффузионной теории при U > 2,3 кТ/е

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (53)

должна увеличиваться с ростом напряжения слабее, чем по диодной теории. Плотность обратного тока при |U| > 2,3 кТ/е

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (54)

слабо растет при увеличении U.

Теперь сравним по величине плотность обратного тока по диодной теории, которую с учетом соотношения (38) можно записать в виде

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (55)

с плотностью обратного тока по диффузионной теории

Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru (56)

Поскольку Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru Ясно, что и прямой ток при фиксированных значениях напряжения по диффузионной теории меньше, чем по диодной. При Диффузионная теория выпрямления запорного слоя Шоттки - student2.ru соотношение (50) описывает плотность тока по диодной теории.

Из рассмотренного материала видно, что контакт металл - полупроводник с запорным слоем Шоттки обладает резко асимметричной вольтамперной характеристикой и, следовательно, может быть использован для выпрямления переменного тока. Полупроводниковые диоды, в основе действия которых лежат функциональные возможности запорного слоя Шоттки, получили название диодов с барьером Шоттки.

Наши рекомендации