Метод Гаусса. 1 страница
Пусть дана система №9. Идея метода состоит в следующем: пусть коэффициент при в первом уравнении системы №1 .
1) Исключим неизвестное из всех уравнений системы, кроме первого. Для этого прежде всего разделим обе части уравнения сист-мы№1 на коэффициент . Получим новую систему, равносильную данной.
2) Умножим первое уравнение на и вычтем его из второго уравнения системы; затем умножим первое уравнение на и вычтем его из третьего уравнения и т. д. В результате этого шага приходим к системе вида №2:
, где ---(10)
3) Исключим из всех уравнений системы №2, кроме первого и второго. Для этого разделим обе части второго уравнения системы №2 на ; затем умножим второе уравнение последовательно на и вычтем поочередно из соответствующих уравнений, кроме 1-го и 2-го.
4) Продолжая этот процесс далее, мы придем либо к системе вида:
--- (11) в случае ее совместности, либо к системе вида:
---(12)
5) система вида (11) называется ступенчатой, система вида (12) – треугольной. В случае системы (12) из последнего уравнения определяется , подставляется в предыдущее уравнение системы (12), определяем неизвестное и т. д. из 1-го уравнения найдем неизвестное.
В случае системы (11) имеем систему совместную, но не определенную, которая имеет множество решений. Выделяем базисный минор и базисные неизвестные, остальные неизвестные назовем свободные и приведем систему (11) к виду (12).
Все выше указанные описания на практике производят над матрицами, составленными из коэффициентов перед неизвестными и столбца свободных коэффициентов.
Пример 22: 1) Исследовать систему, и в случае ее совместности найти решение
Решение: ~ ~
~
- свободные переменные
последней матрице соответствует система
равносильная исходной
Вариант 1
А1. Вычислить определитель:
а) б) .
А2. Решить уравнение:
.
А3. Вычислить определитель, пользуясь правилом треугольника:
.
А4. Найти алгеброические дополнения элементов и определителя (см. задачу А3).
А5. Вычислить определитель, используя подходящее разложение по строке или столбцу: .
А6. Решить систему уравнений с помощью правила Крамера.
а) | б) |
А7. Найти матрицу , полученную путем преобразований матриц и :
.
;
А8. Вычислить: .
А9. При каких значениях матрица не имеет обратную?
А10. Решить матричное уравнение:
А11. При каких значениях матрица имеет ранг, равный 1?
В1. Вычислить определитель, предварительно обратив в нуль все, кроме одного, элемента какой-либо строки (столбца):
.
В2. Вычислить определитель приведением их методом Гаусса к треугольному виду.
а) | б) |
В3. Умножить матрицы:
В4. При каких значениях матрицы перестановочны?
В5. Найти обратную матрицу:
В6. Найти ранг матрицы методом Гаусса:
В7. Решить методом Гаусса систему уравнений:
.
С1. Умножить матрицы:
.
С2. Решить матричным методом систему уравнений из задачи А6 (б).
Найдём определитель матрицы системы
detA= =-3≠0, значит, к системе применим матричный метод. Находим обратную матрицу :
=-
Запишем решение системы в матричной форме
=- × =- =
Следовательно, =2, =-5, =3.
С3. Решить методом Гаусса системы уравнений:
а) Преобразуем расширенную матрицу системы: (чтобы получить на диагонали элемент, отличный от нуля, приходится изменить порядок неизвестных) Полученной матрице соответствует система Система неопределенна (r = 3 < n = 5). Неизвестные , , – базисные, , - свободные. Последовательно находим: = -13 - 2; = -2 -9 +2= = -2(-13 -2) -9 +2=17 +6; = + 2 +4 - +1= =17 +6+2(-13 -2)+4 - +1= = -5 - +3 Полагая = u, = ѵ, получаем общее решение системы в виде = -u+5ѵ+3, =u, =17ѵ+6, =13ѵ-2, = ѵ б) Преобразуем расширенную матрицу системы: Здесь последовательно выполнили следующие преобразования: 1) Переставили первую и четвертую строки; первую строку, умноженную на 3,2,7, вычли поочередно из второй, третьей, четвертой строк, 2) Вторую строку разделили на 2; вторую строку, умноженную на 1, затем 5, вычли поочередно из третьей, затем четвертой строк. Последней матрице соответствует система (Уравнение 0=0, соответствующее третьей строке матрицы, отброшено). Мы пришли к системе, содержащей противоречивое уравнение 0=9. Ранги основной матрицы системы и расширенной матрицы не равны. Система несовместима. | |
в) . Однородная система всегда имеет решение. Если определитель основной матрицы системы равен нулю, то система имеет множество решений. Если же определитель не равен нулю, то система имеет единственное нулевое решение. С помощью элементарных преобразований получим: |
Будем считать базисными переменными , а свободными . Имеем систему
Отсюда получим решение:
Вариант 2
А1. Вычислить определитель:
а) б) .
А2. Решить уравнение:
.
А3. Вычислить определитель, пользуясь правилом треугольника:
.
А4. Найти алгеброические дополнения элементов и определителя (см. задачу А3).
А5. Вычислить определитель, используя подходящее разложение по строке или столбцу:
.
А6. Решить систему уравнений с помощью правила Крамера.
а) | б) |
А7. Найти матрицу , полученную путем преобразований матриц и :
.
;
А8. Вычислить:
.
А9. При каких значениях матрица не имеет обратную?
А10. Решить матричное уравнение:
.
А11. При каких значениях матрица имеет ранг, равный 1?
В1. Вычислить определитель, предварительно обратив в нуль все, кроме одного, элемента какой-либо строки (столбца):
.
В2. Вычислить определитель приведением их методом Гаусса к треугольному виду.
а) | б) |
В3. Умножить матрицы:
.
В4. При каких значениях матрицы перестановочны?
В5. Найти обратную матрицу:
.
В6. Найти ранг матрицы методом Гаусса:
.
В7. Решить методом Гаусса систему уравнений:
.
С1. Умножить матрицы:
* .
С2. Решить матричным методом систему уравнений из задачи А6 (б).
С3. Решить методом Гаусса системы уравнений:
а) , | б) |
в) . |
Вариант 3
А1. Вычислить определитель:
а) б) .
А2. Решить уравнение:
.
А3. Вычислить определитель, пользуясь правилом треугольника:
.
А4. Найти алгеброические дополнения элементов и определителя (см. задачу А3).
А5. Вычислить определитель, используя подходящее разложение по строке или столбцу:
.
А6. Решить систему уравнений с помощью правила Крамера.
а) | б) |
А7. Найти матрицу , полученную путем преобразований матриц и :
.
;
А8. Вычислить:
.
А9. При каких значениях матрица не имеет обратную?
А10. Решить матричное уравнение:
.
А11. При каких значениях матрица имеет ранг, равный 1?
В1. Вычислить определитель, предварительно обратив в нуль все, кроме одного, элемента какой-либо строки (столбца):
.
В2. Вычислить определитель приведением их методом Гаусса к треугольному виду.
а) | б) |
В3. Умножить матрицы:
.
В4. При каких значениях матрицы перестановочны?
В5. Найти обратную матрицу:
.
В6. Найти ранг матрицы методом Гаусса:
.
В7. Решить методом Гаусса систему уравнений:
.
С1. Умножить матрицы:
.
С2. Решить матричным методом систему уравнений из задачи А6 (б).
С3. Решить методом Гаусса системы уравнений:
а) , | б) |
в) . |
Вариант 4
А1. Вычислить определитель:
а) б) .
А2. Решить уравнение:
.
А3. Вычислить определитель, пользуясь правилом треугольника:
.
А4. Найти алгеброические дополнения элементов и определителя (см. задачу А3).
А5. Вычислить определитель, используя подходящее разложение по строке или столбцу:
.
А6. Решить систему уравнений с помощью правила Крамера.
а) | б) |
А7. Найти матрицу , полученную путем преобразований матриц и :
.
;
А8. Вычислить:
.
А9. При каких значениях матрица не имеет обратную?
А10. Решить матричное уравнение:
.
А11. При каких значениях матрица имеет ранг, равный 1?
В1. Вычислить определитель, предварительно обратив в нуль все, кроме одного, элемента какой-либо строки (столбца):
.
В2. Вычислить определитель приведением их методом Гаусса к треугольному виду.
а) | б) |
В3. Умножить матрицы:
.
В4. При каких значениях матрицы перестановочны?