Введение. Мир создан ради богов и людей
СИГНАЛЫ и ЛИНЕЙНЫЕ СИСТЕМЫ
Тема 9: МОДУЛИРОВАННЫЕ СИГНАЛЫ
Мир создан ради богов и людей.
Хрисипп. Греческий философ, стоик, III в.д.н.э.
Все создается с какой-то целью. Придется разобраться, для чего же созданы модулированные сигналы. И почему на них не обратили внимание ни древние греки, ни Михайло Васильевич Ломоносов.
Евгений Прокопчук. Иркутский геофизик Уральской школы, казак, ХХ в.
Содержание: Введение. 9.1. Амплитудная модуляция. Однотональная модуляция. Энергия однотонального АМ-сигнала. Многотональный модулирующий сигнал. Демодуляция АМ-сигналов. Балансная амплитудная модуляция. Однополосная амплитудная модуляция. Полярная модуляция. 9.2. Сигналы с угловой модуляцией. Фазовая модуляция (ФМ). Частотная модуляция (ЧМ). Однотональная угловая модуляция. Спектры сигналов с угловой модуляцией. Сигналы с многотональной угловой модуляцией. Демодуляция УМ – сигналов. Квадратурная модуляция. Пример моделирования квадратурной модуляции в системе Mathcad. Демодуляция квадратурного сигнала. 9.3. Внутриимпульсная частотная модуляция. ЛЧМ-сигналы. Спектр прямоугольного ЛЧМ-сигнала. 9.4. Импульсно-модулированные сигналы. Амплитудно-импульсная модуляция. Широтно-импульсная модуляция. Временная импульсная модуляция. Кодово-импульсная модуляция. 9.5. Модуляция символьных и кодовых данных. Амплитудно-манипулированные сигналы. Угловая манипуляция. Литература.
Введение
Сигналы от измерительных датчиков и любых других источников информации передаются по линиям связи к приемникам - измерительным приборам, в измерительно-вычислительные системы регистрации и обработки данных, в любые другие центры накопления и хранения данных. Как правило, информационные сигналы являются низкочастотными и ограниченными по ширине спектра, в отличие от широкополосных высокочастотных каналов связи, рассчитанных на передачу сигналов от множества источников одновременно с частотным разделением каналов. Перенос спектра сигналов из низкочастотной области в выделенную для их передачи область высоких частот выполняется операцией модуляции.
Допустим, что низкочастотный сигнал, подлежащий передаче по какому-либо каналу связи, задается функцией s(t). В канале связи для передачи данного сигнала выделяется определенный диапазон высоких частот. На входе канала связи в специальном передающем устройстве формируется вспомогательный, как правило, непрерывный во времени периодический высокочастотный сигнал u(t) = f(t; a1, a2, … am). Совокупность параметров ai определяет форму вспомогательного сигнала. Значения параметров ai в отсутствие модуляции являются величинами постоянными. Если на один из этих параметров перенести сигнал s(t), т.е. сделать его значение пропорционально зависимым от значения s(t) во времени (или по любой другой независимой переменной), то форма сигнала u(t) приобретает новое свойство. Она несет информацию, тождественную информации в сигнале s(t). Именно поэтому сигнал u(t) называют несущим сигналом, несущим колебанием или просто несущей (carrier), а физический процесс переноса информации на параметры несущего сигнала – его модуляцией (modulation). Исходный информационный сигнал s(t) называют модулирующим (modulating signal), результат модуляции – модулированным сигналом (modulated signal). Обратную операцию выделения модулирующего сигнала из модулированного колебания называют демодуляцией (demodulation).
Основным видом несущих сигналов являются гармонические колебания:
u(t) = U×cos(wt+j),
которые имеют три свободных параметра: U, w и j. В зависимости от того, на какой из данных параметров переносится информация, различают амплитудную (АМ), частотную (ЧМ) или фазовую (ФМ) модуляцию несущего сигнала. Частотная и фазовая модуляция тесно взаимосвязаны, поскольку изменяют аргумент функции косинуса, и их обычно объединяют под общим названием - угловая модуляция (angle modulation). В каналах передачи цифровой информации получила также распространение квадратурная модуляция, при которой одновременно изменяются амплитуда и фаза несущих колебаний.
При использовании в качестве несущих сигналов периодических последовательностей импульсов (например, прямоугольных) свободными параметрами модуляции могут быть амплитуда, длительность, частота следования и фаза (положение импульса относительно тактовой точки) импульсов. Это дает четыре основных вида импульсной модуляции: АИМ, ДИМ, ЧИМ и ФИМ.
В качестве несущих сигналов можно использовать не только периодические колебания, но и стационарные случайные процессы. В качестве модулируемых параметров случайных сигналов используются моменты случайных процессов. Так, например, модуляция второго момента случайных последовательностей (модуляция по мощности) представляет собой аналогию амплитудной модуляции.