Закон Дарси для анизотропных сред

Закон Дарси Закон Дарси для анизотропных сред - student2.ru записан в конечном виде, т.е. для пласта или образца породы с постоянной площадью сечения.

Для трубки тока с переменной площадью сечения закон Дарси запишется в дифференциальной форме:

Закон Дарси для анизотропных сред - student2.ru Закон Дарси для анизотропных сред - student2.ru . (2.4)

В проекциях на оси координат:

Закон Дарси для анизотропных сред - student2.ru - дифференциальные уравнения движения

Если ось z направлена вертикально вверх, то дифференциальные уравнения движения примут вид:

Закон Дарси для анизотропных сред - student2.ru . (2.5)

Определим из системы уравнений (2.5) производные Закон Дарси для анизотропных сред - student2.ru , Закон Дарси для анизотропных сред - student2.ru , Закон Дарси для анизотропных сред - student2.ru :

Закон Дарси для анизотропных сред - student2.ru

После подстановки полученных значений в уравнение неразрывности (2.3’) получим:

Закон Дарси для анизотропных сред - student2.ru ,

откуда

Закон Дарси для анизотропных сред - student2.ru . (2.6)

Уравнение (2.6) является дифференциальным уравнением установившейся фильтрации несжимаемой жидкости по закону Дарси в недеформируемой пористой среде и называется уравнением Лапласа.

Основное уравнение фильтрации выводится путем объединения уравнения неразрывности, уравнений движения и, если флюид сжимаем, уравнений состояния. В наиболее общем виде оно записывается в виде:

Закон Дарси для анизотропных сред - student2.ru . (2.7)

Формула (2.4) справедлива для изотропной среды, для которой характерно постоянство проницаемости К по всем направлениям в окрестности рассматриваемой точки.

Пористые среды, в которых коэффициент проницаемости зависит от направления потока, называются анизотропными. Большинство пород-коллекторов имеют отчетливую слоистую структуру. Если плоскость xy совместить с плоскостью слоя, а координатную ось z направить перпендикулярно, то закон Дарси можно записать в виде:

дифференциальные уравнения движения для анизотропных сред
Закон Дарси для анизотропных сред - student2.ru -

Здесь К – проницаемость параллельно напластованию; Кz – проницаемость перпендикулярно напластованию.

Уравнения состояния

Дифференциальные уравнения (2.3) и (2.5) содержат коэффициенты плотности r и вязкости m флюида, а также коэффициенты пористости m и проницаемости К породы. Зависимости этих параметров от давления называются уравнениями состояния флюида и пористой среды.

Параметр Экспоненциальная зависимость Линейная зависимость
Плотность Закон Дарси для анизотропных сред - student2.ru Закон Дарси для анизотропных сред - student2.ru
Вязкость Закон Дарси для анизотропных сред - student2.ru Закон Дарси для анизотропных сред - student2.ru
Пористость Закон Дарси для анизотропных сред - student2.ru Закон Дарси для анизотропных сред - student2.ru
Проницаемость Закон Дарси для анизотропных сред - student2.ru Закон Дарси для анизотропных сред - student2.ru

r0, m0, m0, К0 – значения параметров при фиксированном (начальном давлении Р0;

r, m, m, К – значения параметров при текущем давлении Р;

bж – коэффициент объемного сжатия жидкости, Па-1;

bс – коэффициент объемной упругости среды, Па-1;

am, am, aк – коэффициенты, определяемые экспериментально и зависящие от свойств жидкости и породы, Па-1.

Уравнения состояния пласта и насыщающих его флюидов замыкают систему дифференциальных уравнений.

Наши рекомендации