Свойства степенной функции с отрицательным рациональным показателем

· Область определения: Свойства степенной функции с отрицательным рациональным показателем - student2.ru .
Поведение на границе области определения Свойства степенной функции с отрицательным рациональным показателем - student2.ru при Свойства степенной функции с отрицательным рациональным показателем - student2.ru и а – несократимая рациональная дробь с четным числителем и нечетным знаменателем.
Следовательно, х = 0 является вертикальной асимптотой.

· Область значений: Свойства степенной функции с отрицательным рациональным показателем - student2.ru .

· Функция четная, так как Свойства степенной функции с отрицательным рациональным показателем - student2.ru .

· Функция возрастает при Свойства степенной функции с отрицательным рациональным показателем - student2.ru , убывает при Свойства степенной функции с отрицательным рациональным показателем - student2.ru .

· Функция вогнутая при Свойства степенной функции с отрицательным рациональным показателем - student2.ru .

· Точек перегиба нет.

· Горизонтальной асимптотой является прямая y = 0.

· Функция проходит через точки (-1;1), (1;1).

К началу страницы

Переходим к степенной функции Свойства степенной функции с отрицательным рациональным показателем - student2.ru для случая, когда Свойства степенной функции с отрицательным рациональным показателем - student2.ru и а – несократимая рациональная дробь с четным знаменателем (например, а = -3/2 или -21/8).

Для примера покажем графики степенных функций Свойства степенной функции с отрицательным рациональным показателем - student2.ru – красная линия, Свойства степенной функции с отрицательным рациональным показателем - student2.ru – синяя линия и Свойства степенной функции с отрицательным рациональным показателем - student2.ru – черная линия.

Свойства степенной функции с отрицательным рациональным показателем - student2.ru

Свойства степенной функции с отрицательным рациональным показателем.

· Область определения: Свойства степенной функции с отрицательным рациональным показателем - student2.ru .
Поведение на границе области определения Свойства степенной функции с отрицательным рациональным показателем - student2.ru при Свойства степенной функции с отрицательным рациональным показателем - student2.ru и а – рациональная дробь с четным знаменателем. Следовательно, х = 0 является вертикальной асимптотой.

· Область значений: Свойства степенной функции с отрицательным рациональным показателем - student2.ru .

· Функция не является ни четной, ни нечетной, то есть она общего вида.

· Функция убывает при Свойства степенной функции с отрицательным рациональным показателем - student2.ru .

· Функция вогнутая при Свойства степенной функции с отрицательным рациональным показателем - student2.ru .

· Точек перегиба нет.

· Горизонтальной асимптотой является прямая y = 0.

· Функция проходит через точку (1;1).

Замечание.

Если Свойства степенной функции с отрицательным рациональным показателем - student2.ru и а – иррациональное число (например, минус корень квадратный из семи), то вид графика такой степенной функции аналогичен виду графиков, показанных в этом пункте, свойства абсолютно схожи.

К началу страницы

Рассмотрим степенную функцию Свойства степенной функции с отрицательным рациональным показателем - student2.ru , когда Свойства степенной функции с отрицательным рациональным показателем - student2.ru , числитель и знаменатель рациональной дроби в показателе степени представляет собой нечетные числа, а сама дробь несократима (к примеру, -5/3 или -25/7).

Свойства степенной функции с отрицательным рациональным показателем - student2.ru

В качестве примера на рисунке изображены графики степенных функци Свойства степенной функции с отрицательным рациональным показателем - student2.ru – синяя линия, Свойства степенной функции с отрицательным рациональным показателем - student2.ru – красная линия.

Свойства степенной функции с отрицательным рациональным показателем.

· Область определения: Свойства степенной функции с отрицательным рациональным показателем - student2.ru .
Поведение на границе области определения Свойства степенной функции с отрицательным рациональным показателем - student2.ru при Свойства степенной функции с отрицательным рациональным показателем - student2.ru и а – несократимая рациональная дробь с нечетным и числителем и знаменателем.
Следовательно, х = 0 является вертикальной асимптотой.

· Область значений: Свойства степенной функции с отрицательным рациональным показателем - student2.ru .

· Функция нечетная, так как Свойства степенной функции с отрицательным рациональным показателем - student2.ru .

· Функция убывает при Свойства степенной функции с отрицательным рациональным показателем - student2.ru .

· Функция выпуклая при Свойства степенной функции с отрицательным рациональным показателем - student2.ru и вогнутая при Свойства степенной функции с отрицательным рациональным показателем - student2.ru .

· Точек перегиба нет.

· Горизонтальной асимптотой является прямая y = 0.

· Функция проходит через точки (-1;-1), (1;1).

К началу страницы

Разберемся со степенной функцией Свойства степенной функции с отрицательным рациональным показателем - student2.ru , когда Свойства степенной функции с отрицательным рациональным показателем - student2.ru , числитель рациональной дроби в показателе степени представляет собой четное число, а знаменатель - нечетное число и сама дробь несократима (например, -6/5 или -24/7).

Свойства степенной функции с отрицательным рациональным показателем - student2.ru

На иллюстрации взяты графики степенных функций Свойства степенной функции с отрицательным рациональным показателем - student2.ru – синяя линия, Свойства степенной функции с отрицательным рациональным показателем - student2.ru – красная линия.

Наши рекомендации