Aлгоритм выполнения действий сложения и вычитания

Знаменатели дробей разложить на множители.

Найти наименьший общий знаменатель для дробей.

Привести все дроби к найденному знаменателю. Для этого находим дополнительные множители.

Сложить или вычесть дроби по правилу сложения или вычитания дробей с одинаковыми знаменателями.

Пример:

1. Вычислить: – 3,25 : Aлгоритм выполнения действий сложения и вычитания - student2.ru + 6,75 · Aлгоритм выполнения действий сложения и вычитания - student2.ru

Решение. Указанные действия надо выполнить, не пользуясь микрокалькулятором, не делая округлений и приближенных вычислений, так как предполагается, что все заданные числа являются точными.

Будем выполнять вычисления по действиям:

1. – 3,25 : Aлгоритм выполнения действий сложения и вычитания - student2.ru = – 3 Aлгоритм выполнения действий сложения и вычитания - student2.ru : Aлгоритм выполнения действий сложения и вычитания - student2.ru = Aлгоритм выполнения действий сложения и вычитания - student2.ru : Aлгоритм выполнения действий сложения и вычитания - student2.ru = Aлгоритм выполнения действий сложения и вычитания - student2.ru = Aлгоритм выполнения действий сложения и вычитания - student2.ru

2. Aлгоритм выполнения действий сложения и вычитания - student2.ru - 2 Aлгоритм выполнения действий сложения и вычитания - student2.ru - 1,65 = Aлгоритм выполнения действий сложения и вычитания - student2.ru - Aлгоритм выполнения действий сложения и вычитания - student2.ru - Aлгоритм выполнения действий сложения и вычитания - student2.ru = Aлгоритм выполнения действий сложения и вычитания - student2.ru - Aлгоритм выполнения действий сложения и вычитания - student2.ru - Aлгоритм выполнения действий сложения и вычитания - student2.ru = Aлгоритм выполнения действий сложения и вычитания - student2.ru = Aлгоритм выполнения действий сложения и вычитания - student2.ru = Aлгоритм выполнения действий сложения и вычитания - student2.ru = Aлгоритм выполнения действий сложения и вычитания - student2.ru

3. 6,75 ·( Aлгоритм выполнения действий сложения и вычитания - student2.ru ) = Aлгоритм выполнения действий сложения и вычитания - student2.ru · Aлгоритм выполнения действий сложения и вычитания - student2.ru == Aлгоритм выполнения действий сложения и вычитания - student2.ru = - 21,9

4. Aлгоритм выполнения действий сложения и вычитания - student2.ru - 21,9 =0,625 – 21,9 = - 20, 275

Таким образом, – 3,25 : Aлгоритм выполнения действий сложения и вычитания - student2.ru + 6,75 · Aлгоритм выполнения действий сложения и вычитания - student2.ru =- 20, 275

2. Aлгоритм выполнения действий сложения и вычитания - student2.ru + Aлгоритм выполнения действий сложения и вычитания - student2.ru

Aлгоритм выполнения действий сложения и вычитания - student2.ru = Aлгоритм выполнения действий сложения и вычитания - student2.ru ; Aлгоритм выполнения действий сложения и вычитания - student2.ru = Aлгоритм выполнения действий сложения и вычитания - student2.ru
Наименьший общий знаменатель a( Aлгоритм выполнения действий сложения и вычитания - student2.ru )( Aлгоритм выполнения действий сложения и вычитания - student2.ru )
Aлгоритм выполнения действий сложения и вычитания - student2.ru = Aлгоритм выполнения действий сложения и вычитания - student2.ru = Aлгоритм выполнения действий сложения и вычитания - student2.ru ; Aлгоритм выполнения действий сложения и вычитания - student2.ru = Aлгоритм выполнения действий сложения и вычитания - student2.ru = Aлгоритм выполнения действий сложения и вычитания - student2.ru
Aлгоритм выполнения действий сложения и вычитания - student2.ru + Aлгоритм выполнения действий сложения и вычитания - student2.ru = Aлгоритм выполнения действий сложения и вычитания - student2.ru = Aлгоритм выполнения действий сложения и вычитания - student2.ru
Решить самостоятельно следующие примеры:

1.Привести к общему знаменателю: a) Aлгоритм выполнения действий сложения и вычитания - student2.ru + Aлгоритм выполнения действий сложения и вычитания - student2.ru b) Aлгоритм выполнения действий сложения и вычитания - student2.ru - Aлгоритм выполнения действий сложения и вычитания - student2.ru c) Aлгоритм выполнения действий сложения и вычитания - student2.ru + Aлгоритм выполнения действий сложения и вычитания - student2.ru d) Aлгоритм выполнения действий сложения и вычитания - student2.ru + Aлгоритм выполнения действий сложения и вычитания - student2.ru e) Aлгоритм выполнения действий сложения и вычитания - student2.ru - Aлгоритм выполнения действий сложения и вычитания - student2.ru

2. Докажите тождество
. Aлгоритм выполнения действий сложения и вычитания - student2.ru - Aлгоритм выполнения действий сложения и вычитания - student2.ru + Aлгоритм выполнения действий сложения и вычитания - student2.ru = 1
3. Зная, что Aлгоритм выполнения действий сложения и вычитания - student2.ru = 10, найдите значение дроби:
а) Aлгоритм выполнения действий сложения и вычитания - student2.ru ; б) Aлгоритм выполнения действий сложения и вычитания - student2.ru ; в) Aлгоритм выполнения действий сложения и вычитания - student2.ru ;

4. При каком значении переменной bвыражение 3 + Aлгоритм выполнения действий сложения и вычитания - student2.ru тождественно равно дроби Aлгоритм выполнения действий сложения и вычитания - student2.ru ?
5. Вычислить: - 3 Aлгоритм выполнения действий сложения и вычитания - student2.ru Aлгоритм выполнения действий сложения и вычитания - student2.ru (-2 Aлгоритм выполнения действий сложения и вычитания - student2.ru 5,5 + 4,3 Aлгоритм выполнения действий сложения и вычитания - student2.ru 3,7) - 2 Aлгоритм выполнения действий сложения и вычитания - student2.ru

(2,8:(2 Aлгоритм выполнения действий сложения и вычитания - student2.ru · (8,75-2 Aлгоритм выполнения действий сложения и вычитания - student2.ru ))) · 7,25 - 3 Aлгоритм выполнения действий сложения и вычитания - student2.ru : ((1,2 + 5 Aлгоритм выполнения действий сложения и вычитания - student2.ru ) · 3,75)

3 Aлгоритм выполнения действий сложения и вычитания - student2.ru :((1 Aлгоритм выполнения действий сложения и вычитания - student2.ru +2,5) · 3,2)+(4,25 : (4 Aлгоритм выполнения действий сложения и вычитания - student2.ru · (5,25 - 1 Aлгоритм выполнения действий сложения и вычитания - student2.ru ))) · 2

Самостоятельная работа№2

Тема 1.2. Разложение многочлена на множители.

Самостоятельная работа№2 (4 часа)

Цель: отработать навык решения квадратных уравнений, разложения многочленов на множители.

План работы:

1.Повторить виды квадратных уравнений и способы их решения.

2.Способы разложения на множители:

вынесение за скобку общего множителя;

группировка.

3.Формулы сокращённого умножения.

Теоретические сведения.

Ключевые слова: множители, разложение на множители, вынесение общего множителя, формулы сокращенного умножения, способ группировки, метод выделения полного квадрата.

Определение. Тождественное преобразование, приводящее к произведению нескольких мнразложением многочлена на множители. В этом случае говорят, что многочлен делится на каждый из этих множителей.

Вынесение общего множителя за скобки.Этопреобразование является непосредственным следствием распределительного закона ac + bc = c(a + b)

Пример. Разложить многочлен на множители 12 y 3 – 20 y 2.

Решение. Имеем: 12 y 3 – 20 y 2 = 4 y 2 · 3 y – 4 y 2 · 5 = 4 y 2 (3 y – 5). Ответ. 4 y 2(3 y – 5).

Использование формул сокращенного умножения. Формулы сокращённого умножения позволяют довольно эффективно представлять многочлен в форме произведения.

Пример. Разложить на множители многочлен x 4 – 1. Решение. Имеем: x 4 – 1 = ( x 2 ) 2 – 1 2 = ( x 2 – 1)( x 2 + 1) = ( x 2 – 1 2 )( x 2 + 1) = ( x + 1)( x – 1)( x 2 + 1). Ответ. ( x + 1)( x – 1)( x 2 + 1).

Способ группировки. Этот способ заключается в том, что слагаемые многочлена можно сгруппировать различными способами на основе сочетательного и переместительного законов. На практике он применяется в тех случаях, когда многочлен удается представить в виде пар слагаемых таким образом, чтобы из каждой пары можно было выделить один и тот же множитель. Этот общий множитель можно вынести за скобку и исходный многочлен окажется представленным в виде произведения.

Пример. Разложить на множители многочлен x 3 – 3 x 2 y – 4 xy + 12 y 2.

Решение. Сгруппируем слагаемые следующим образом:
x 3 – 3 x 2 y – 4 xy + 12 y 2 = ( x 3 – 3 x 2 y ) – (4 xy – 12 y 2 ). В первой группе вынесем за скобку общий множитель x 2, а во второй − 4 y . Получаем:
( x 3 – 3 x 2 y ) – (4 xy – 12 y 2 ) = x 2 ( x – 3 y ) – 4 y ( x – 3 y ). Теперь общий множитель ( x – 3 y ) также можно вынести за скобки:
x 2 ( x – 3 y ) – 4 y ( x – 3 y ) = ( x – 3 y )( x 2 – 4 y ). Ответ. ( x – 3 y )( x 2 – 4 y ).

Наши рекомендации