Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей

Электрическое поле. Закон Кулона. Напряженность поля. Принцип суперпозиции полей. Поток вектора напряженности. Теорема Гаусса для электростатического поля в вакууме.

Наэлектризованные тела – тела, способные притягивать другие предметы, как и янтарь. Такие тела имеют электрические заряды и называются заряженными.

Есть 2 типа зарядов: положительные и отрицательные.

Одноименные заряды отталкиваются, разноименные – притягиваются.

Электрический заряд дискретен, т.е. заряд любого тела составляет целое кратное от некоторого элементарного заряда.

Электрон носит элементарный отрицательный заряд, а протон – положительный.

Закон сохранения электрических зарядов (з.Фарадея):

Алгебраическая сумма электрических зарядов любой замкнутой системы с течением времени не изменяется.

Поле, которое создает неподвижный электрический заряд – электростатическое поле.

Закон Кулона

Позволяет рассчитать силу взаимодействия двух точечных зарядов Q1 и Q2, которые находятся на расстоянии r друг от друга.

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru – диэлектрическая проницаемость среды;

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru – электрическая постоянная.

Для изучения характеристик поля используют пробный точечный «+» заряд Q0.

На пробный заряд, помещённый в электростатическое поле, будет действовать сила, отношение которой к величине пробного заряда будет равно напряженности электростатического поля в этой точке.

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Применим формулу закона Кулона и получим

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Принцип суперпозиции полей: Напряженность результирующего электростатического поля, создаваемого в какой-либо точке пространства несколькими зарядами равна векторной сумме напряженностей полей, создаваемых в этой точке каждым зарядом в отдельности.

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Вектора Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru и Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru совпадают по направлению

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru
Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Результат будет справедлив и для поверхности любой другой формы, охватывающей заряд.

Если поверхность охватывает несколько зарядов, то

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Таким образом, поток вектора электростатического поля в вакууме через произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов деленной на Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru – теорема Гаусса для потока вектора Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru в вакууме.

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей.

Поверхностная плотность заряда – скалярная величина

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Если заряд распределен равномерно по поверхности, то

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Электрическое поле, создаваемое бесконечной равномерно заряженной плоскостью - однородное.

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Напряженность электростатического поля в вакууме

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Ось цилиндра перпендикулярна плоскости, а основания параллельны ей, следовательно, Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru . Поэтому сквозь боковую поверхность цилиндра Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru , а полный поток сквозь цилиндр Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru . Заряд внутри построенной поверхности Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru .

Согласно теореме Гаусса

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Т.о., Е не зависит от длины цилиндра, то есть напряженность поля на любых расстояниях одинакова по модулю.

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Напряженности полей, создаваемых плоскостями, равны по модулю

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Из рисунка видно, что слева и справа поле отсутствует, а посередине (между плоскостями) напряженность поля равна

Применение теоремы Гаусса к расчёту полей равномерно заряженной бесконечной плоскости и двух бесконечных параллельных разноименно заряженных плоскостей - student2.ru

Наши рекомендации